Lecture 2. September 9, 2005
Homework. Problem Set 1 Part I: (f)-(h); Part II: Problems 3.
Practice Problems. Course Reader: 1C-2, 1C-3, 1C-4, 1D-3, 1D-5.

1. Tangent lines to graphs. For $y=f(x)$, the equation of the secant line through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{0}+\Delta x, f\left(x_{0}+\Delta x\right)\right)$ is,

$$
y=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}\left(x-x_{0}\right)+f\left(x_{0}\right) .
$$

In the limit, the equation of the tangent line through $\left(x_{0}, f\left(x_{0}\right)\right)$ is,

$$
y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0} .
$$

Example. For the parabola $y=x^{2}$, the derivative is,

$$
y^{\prime}\left(x_{0}\right)=2 x_{0} .
$$

The equation of the tangent line is,

$$
y=2 x_{0}\left(x-x_{0}\right)=2 x_{0} x-x_{0}^{2} .
$$

For instance, the equation of the tangent line through $(2,4)$ is,

$$
y=4 x-4
$$

Given a point (x, y), what are all points $\left(x_{0}, x_{0}^{2}\right)$ on the parabola whose tangent line contains $(x, y) ?$ To solve, consider x and y as constants and solve for x_{0}. For instance, if $(x, y)=$ $(1,-3)$, this gives,

$$
(-3)=2 x_{0}(1)-x_{0}^{2}
$$

or,

$$
x_{0}^{2}-2 x_{0}-3=0
$$

Factoring $\left(x_{0}-3\right)\left(x_{0}+1\right)$, the solutions are x_{0} equals -1 and x_{0} equals 3 . The corresponding tangent lines are,

$$
y=-2 x-1
$$

and

$$
y=6 x-9
$$

For general (x, y), the solutions are,

$$
x_{0}=x \pm \sqrt{x^{2}-y}
$$

2. Limits. Precise definition is on p. 791 of Appendix A.2. Intuitive definition: $\lim _{x \rightarrow x_{0}} f(x)$ equals L if and only if all values of $f(x)$ can be made arbitrarily close to L by choosing x sufficiently close to x_{0}. One interpretation is the "microscope/laser illuminator" analogy: An observer focuses a microscopes field-of-view on a thin strip parallel to the x-axis centered on $y=L$. The goal of the illuminator is to focus a laser-beam centered on x_{0} parallel to the y-axis (but with the line $x=x_{0}$ deleted) so that only the portion of the graph in the field-of-view is illuminated. If for every magnification of the microscope, the illuminator can succeed, then the limit is defined and equals L.

There is a beautiful Java applet on the webpage of Daniel J. Heath of Pacific Lutheran University,

```
http://www.plu.edu/~heathdj/java/calc1/Epsilon.html
```

If you use this, try $a=-1$.
For left-hand limits, use a laser that illuminates only to the left of x_{0}. For right-hand limits, use a laser that illuminates only to the right of x_{0}.
3. Continuity. A function $f(x)$ is continuous at x_{0} if $f\left(x_{0}\right)$ is defined, $\lim _{x \rightarrow x_{0}} f(x)$ is defined, and $\lim _{x \rightarrow x_{0}} f(x)$ equals $f\left(x_{0}\right)$. Also, $f(x)$ is continuous on an interval if it is continuous at every point of the interval. The types of discontinuity are: removable discontinuity, jump discontinuity, infinite discontinuity and essential discontinuity.

