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Lecture 26 18.01 Fall 2006 

Lecture 26: Trigonometric Integrals and Substitution 

Trigonometric Integrals 

How do you integrate an expression like sinn x cosmx dx? (n = 0, 1, 2... and m = 0, 1, 2, . . .) 

We already know that: 

sin x dx = − cos x + c and cos x dx = sin x + c 

Method A 

Suppose either n or m is odd. 

Example 1. sin3 x cos2x dx. 

Our strategy is to use sin2 x + cos2x = 1 to rewrite our integral in the form: 

sin3 x cos2x dx = f(cosx) sinx dx 

Indeed, � � � 
sin3 x cos2x dx = sin2 x cos2 x sin x dx = (1 − cos2 x) cos2 x sin x dx 

Next, use the substitution 
u = cos x and du = − sin x dx 

Then, � � 
(1 − cos2 x) cos2 x sin x dx = (1 − u 2)u 2(−du) 

1 1 1 1 
= (−u 2 + u 4)du = − 

3 
u 3 +

5 
u 5 + c = − 

3 
cos3 u + 

5 
cos5 x + c 

Example 2. � � � 
cos3x dx = f(sin x) cos x dx = (1 − sin2 x) cos x dx 

Again, use a substitution, namely 

u = sin x and du = cos x dx 

u3 sin3 x 
cos3x dx = (1 − u 2)du = u − + c = sin x − + c

3 3 
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Lecture 26 18.01 Fall 2006 

Method B 

This method requires both m and n to be even. It requires double-angle formulae such as 

1 + cos 2x2cos x = 
2 

(Recall that cos 2x = cos2 x − sin2 x = cos2 x − (1 − sin2 x) = 2 cos2 x − 1) 
Integrating gets us � � 

1 + cos 2x x sin(2x)
cos2 x dx = dx = + + c

2 2 4 

We follow a similar process for integrating sin2 x. 

1 − cos(2x)
sin2 x = 

2 

1 − cos(2x) x sin(2x)
sin2x dx = dx = + c

2 2 
− 

4 

The full strategy for these types of problems is to keep applying Method B until you can apply 
Method A (when one of m or n is odd). 

Example 3. sin2 x cos2x dx. 

Applying Method B twice yields � � � � � � � �
1 − cos 2x 1 + cos 2x 1 1 

2 2 
dx =

4 
− 

4
cos22x dx 

1 1 1 1 
=

4 
− 

8
(1 + cos 4x) dx =

8 
x − 

32 
sin 4x + c 

There is a shortcut for Example 3. Because sin 2x = 2 sin x cos x, � � � �2 � 
sin2 x cos2x dx = 

1 
sin 2x dx =

1 1 − cos 4x
dx = same as above 

2 4 2 

The next family of trig integrals, which we’ll start today, but will not finish is: 

secn x tanmx dx where n = 0, 1, 2, . . . and m = 0, 1, 2, . . . 

Remember that 
sec2 x = 1 + tan2 x 

which we double check by writing 

1 sin2 x cos2 x + sin2 x
= 1 + = 

cos2 x cos2 x cos3 x 

sec2 x dx = tan x + c sec x tan x dx = sec x + c 

2 
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Lecture 26 18.01 Fall 2006 

To calculate the integral of tan x, write 

sin x 
tan x dx = dx 

cos x 

Let u = cos x and du = − sin x dx, then 

sin x du 
tan x dx = 

cos x 
dx = − 

u 
= − ln(u) + c 

tan x dx = − ln(cos x) + c 

(We’ll figure out what sec x dx is later.) 

Now, let’s see what happens when you have an even power of secant. (The case n even.) 

sec4x dx = f(tanx) sec2x dx = (1 + tan2 x) sec2x dx 

Make the following substitution: 
u = tan x 

and 
du = sec2x dx 

u3 tan3 x 
sec4x dx = (1 + u 2)du = u + + c = tan x + + c

3 3 

What happens when you have a odd power of tan? (The case m odd.) 

tan3 x sec x dx = f(sec x) d(sec x) 

= (sec2 x − 1) sec x tan x dx 

(Remember that sec2 x − 1 = tan2 x.) 
Use substitution: 

u = sec x 

and 
du = sec x tan x dx 

Then, � � 
u3 sec3 x 

tan3 x secx dx = (u 2 − 1)du =
3 
− u + c =

3 
− sec x + c 

We carry out one final case: n = 1, m = 0 

sec x dx = ln (tan x + sec x) + c 

3 
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We get the answer by “advanced guessing,” i.e., “knowing the answer ahead of time.” 

sec x + tan x sec2 x + sec x tan x 
sec x dx = sec x dx = dx 

sec x + tan x tan x + sec x 

Make the following substitutions: 
u = tan x + sec x 

and 
du = (sec2 x + sec x tan x) dx 

This gives � � 
du 

sec x dx = = ln(u) + c = ln(tan x + sec x) + c 
u 

Cases like n = 3, m = 0 or more generally n odd and m even are more complicated and will be 

discussed later. 

Trigonometric Substitution 

Knowing how to evaluate all of these trigonometric integrals turns out to be useful for evaluating 
integrals involving square roots. 

Example 4. y = a2 − x2 

a

2 2Figure 1: Graph of the circle x2 + y = a . 

We already know that the area of the top half of the disk is 
a � πa2 

a2 − x2 dx =
2−a 

4 
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What if we want to find this area? 

0 x

Figure 2: Area to be evaluated is shaded. 

To do so, you need to evaluate this integral: � t=x � 
a2 − t2 dt 

t=0 

Let t = a sin u and dt = a cos u du. (Remember to change the limits of integration when you do a 
change of variables.) 
Then, � 

a 2 − t2 = a 2 − a 2 sin2 u = a 2 cos2 u; a2 − t2 = a cos u 

Plugging this into the integral gives us � x � � � u=sin−1(x/a) 

a2 − t2 dt = (a cos u) a cos u du = a 2 cos2 u du 
0 u=0 

Here’s how we calculated the new limits of integration: 

t = 0 = a sin u = 0 = u = 0 ⇒ ⇒ 

t = x = a sin u = x = u = sin−1(x/a)⇒ ⇒ � x � � sin−1(x/a) � 
u sin 2u 

� �sin−1 (x/a) 
a2 − t2 dt = a 2 cos2u du = a 2 + ��

2 4 00 0 

= 
a2 sin−1(x/a)

+ 
a2 � 

2 sin(sin−1(x/a)) cos(sin−1(x/a)) 
� 

2 4 

(Remember, sin 2u = 2 sin u cos u.) 

We’ll pick up from here next lecture (Lecture 28 since Lecture 27 is Exam 3). 

5 
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Lecture 28: Integration by Inverse Substitution;

Completing the Square


Trigonometric Substitutions, continued 

-a 0 x a

Figure 1: Find area of shaded portion of semicircle. � x � 
a2 − t2dt 

0 

t = a sin u; dt = a cos u du 

a 2 − t2 = a 2 − a 2 sin2 u = a 2 cos2 u = ⇒ a2 − t2 = a cos u (No more square root!) 

Start: x = −a ⇔ u = −π/2; Finish: x = a ⇔ u = π/2 � � � � �� 
a2 − t2 dt = a 2 cos2 u du = a 2 1 + cos(2u) 

du = a 2 u 
+ 

sin(2u)
+ c

2 2 4 

1 + cos(2u)
(Recall, cos2 u = ).

2 
We want to express this in terms of x, not u. When t = 0, a sin u = 0, and therefore u = 0. 

When t = x, a sin u = x, and therefore u = sin−1(x/a). 

sin(2u) 2 sin u cos u 1 
= = sin u cos u

4 4 2 � � x
sin u = sin sin−1(x/a) = 

a 

1 
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How can we find cos u = cos sin−1(x/a) ? Answer: use a right triangle (Figure 2). 

a
x

√a²-x²

u

2Figure 2: sin u = x/a; cos u = 
p

a − x2/a. 

From the diagram, we see √
a2 − x2 

cos u = 
a 

And finally, � � � � � 
x � 

a2 − t2 dt = a 2 u 
+ 

1 
sin u cos u − 0 = a 2 sin−1(x/a)

+
1 � x � √a2 − x2 

4 2 2 2 a a0 

x 2� a x 1 � 
a2 − t2 dt = 

2 
sin−1( 

a 
) + 

2 
x a2 − x2 

0 

When the answer is this complicated, the route to getting there has to be rather complicated. 
There’s no way to avoid the complexity. 

1
Let’s double-check this answer. The area of the upper shaded sector in Figure 3 is a 2 u. The 

2 
area of the lower shaded region, which is a triangle of height 

√
a2 − x2 and base x, is 1 x

√
a2 − x2.2 

2 



� 

� 

� = 

� � � 

Lecture 28 18.01 Fall 2006 

0 x

u

Figure 3: Area divided into a sector and a triangle. 

Here is a list of integrals that can be computed using a trig substitution and a trig identity. 

integral substitution trig identity 
dx � 

√
x2 + 1 

x = tan u tan2 u + 1 = sec2 u 

dx √
x2 

x = sec u sec2 u − 1 = tan2 u � − 1 
dx √

1 − x2 
x = sin u 1 − sin2 u = cos2 u 

Let’s extend this further. How can we evaluate an integral like this? 

dx √
x2 + 4x 

When you have a linear and a quadratic term under the square root, complete the square. 

x 2 + 4x = (something)2 ± constant 

In this case, 
(x + 2)2 = x 2 + 4x + 4 = ⇒ x 2 + 4x = (x + 2)2 − 4 

Now, we make a substitution. 
v = x + 2 and dv = dx 

Plugging these in gives us � � 
dx dv 

(x + 2)2 − 4 
√

v2 − 4 

Now, let 
v = 2 sec u and dv = 2 sec u tan u 
dv 2 sec u tan u du √

v2 
= 

2 tan u 
= sec u du 

− 4 

3 
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Remember that � 
sec u du = ln(sec u + tan u) + c 

Finally, rewrite everything in terms of x. 

2 
v = 2 sec u cos u = ⇔ 

v 

Set up a right triangle as in Figure 4. Express tan u in terms of v. 

v

2

√v²-4
u

Figure 4: sec u = v/2 or cos u = 2/v. 

Just from looking at the triangle, we can read off 

v 
√

v2 − 4 
sec u = and tan u = 

2 2 

2 sec u du = ln 
v 

+ 

√
v2 − 4

+ c
2 2 

= ln(v + v2 − 4) − ln 2 + c 

We can combine those last two terms into another constant, c̃. 

dx � 
√

x2 + 4x 
= ln(x + 2 + x2 + 4x) + c̃ 

Here’s a teaser for next time. In the next lecture, we’ll integrate all rational functions. By 
“rational functions,” we mean functions that are the ratios of polynomials: 

P (x)

Q(x)


It’s easy to evaluate an expression like this: 

1 3 
x − 1

+ 
x + 2 

dx = ln |x − 1| + 3 ln |x + 2| + c 

4 
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If we write it a bit differently, however, it becomes much harder to integrate: 

1
+

3
= 

x + 2 + 3(x − 1)
= 

4x − 1

x − 1 x + 2 (x − 1)(x + 2) x2 + x − 2
� 

4x − 1 
= ??? 

x2 + x − 2


How can we reorganize what to do starting from (4x − 1)/(x2 + x − 2)? Next time, we’ll see how. 
It involves some algebra. 

5 
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Lecture 29: Partial Fractions 

We continue the discussion we started last lecture about integrating rational functions. We 
defined a rational function as the ratio of two polynomials: 

P (x)

Q(x)


We looked at the example 

1 3 
x − 1

+ 
x + 2 

dx = ln |x − 1| + 3 ln |x + 2| + c 

That same problem can be disguised: 

1
+

3 
=

(x + 2) + 3(x − 1)
= 

4x − 1

x − 1 x + 2 (x − 1)(x + 2) x2 + x − 2


which leaves us to integrate this: � 
4x − 1 

dx = ??? 
x2 + x − 2 

P (x)
Goal: we want to figure out a systematic way to split into simpler pieces. 

Q(x)


First, we factor the denominator Q(x).


4x − 1
= 

4x − 1
= 

A 
+ 

B

x2 + x − 2 (x − 1)(x + 2) x − 1 x + 2


There’s a slow way to find A and B. You can clear the denominator by multiplying through by 
(x − 1)(x + 2): 

(4x − 1) = A(x + 2) + B(x − 1) 

From this, you find 
4 = A + B and − 1 = 2A − B 

You can then solve these simultaneous linear equations for A and B. This approach can take a very 
long time if you’re working with 3, 4, or more variables. 

There’s a faster way, which we call the “cover-up method”. Multiply both sides by (x − 1): 

4x − 1 B 
x + 2 

= A + 
x + 2 

(x − 1) 

Set x = 1 to make the B term drop out: 

4 − 1
= A

1 + 2 

A = 1 

1 
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The fastest way is to do this in your head or physically cover up the struck-through terms. For 
instance, to evaluate B: 

4x − 1 A� B 
(x − 1)���� x − 1 (x + 2)(x + 2) 

= 
�

� + 
����

Implicitly, we are multiplying by (x + 2) and setting x = −2. This gives us 

4(−2) − 1
= B = B = 3 

−2 − 1 
⇒ 

What we’ve described so far works when Q(x) factors completely into distinct factors and the 
degree of P is less than the degree of Q. 

If the factors of Q repeat, we use a slightly different approach. For example:


x2 + 2 A B C

= + +

(x − 1)2(x + 2) x − 1 (x − 1)2 x + 2 

Use the cover-up method on the highest degree term in (x − 1). 

x2 + 1 12 + 2 
= B + [stuff](x − 1)2 = = B = B = 1 

x + 2 
⇒ 

1 + 2 
⇒ 

Implicitly, we multiplied by (x − 1)2, then took the limit as x → 1. 

C can also be evaluated by the cover-up method. Set x = −2 to get 

x2 + 2 
2 

= C + [stuff](x + 2) = 
(−2)2 + 2 

= C = C =
2 

(x − 1) 
⇒ 

(−2 − 1)2 
⇒ 

3 

This yields 
x2 + 2 A 1 2/3 

= + +
(x − 1)2(x + 2) x − 1 (x − 1)2 x + 2 

Cover-up can’t be used to evaluate A. Instead, plug in an easy value of x: x = 0. 

2 A 1 1 1 
(−1)2(2) 

= 
−1

+ 1 + 
3 

= ⇒ 1 = 1 + 
3 
− A = ⇒ A =

3 

Now we have a complete answer: 

x2 + 2 1 1 2 
= + +

(x − 1)2(x + 2) 3(x − 1) (x − 1)2 3(x + 2) 

Not all polynomials factor completely (without resorting to using complex numbers). For exam­
ple: 

1 A1 B1x + C1 = +
(x2 + 1)(x − 1) x − 1 x2 + 1 

We find A1, as usual, by the cover-up method. 

1 1 
= A1 = A1 = 

12 + 1 
⇒ 

2 

2 
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Now, we have 
1 1/2 B1x + C1 = +

(x2 + 1)(x − 1) x − 1 x2 + 1 

Plug in x = 0. 
1 1 C1 1 

1(−1) 
= − 

2
+

1 
= ⇒ C1 = − 

2 

Now, plug in any value other than x = 0, 1. For example, let’s use x = −1. 

1 
=

1/2
+ 

B1(−1) − 1/2
= 0 = − 

B1 − 1/2
= B1 = − 

1 
2(−2) −2 2 

⇒ 
2 

⇒ 
2 

Alternatively, you can multiply out to clear the denominators (not done here). 

Let’s try to integrate this function, now. 

dx 1 dx 1 x dx 1 dx 
(x2 + 1)(x − 1) 

= 
2 x − 1 

− 
2 x2 + 1 

− 
2 x2 + 1 

1 1 1 
= 

2
ln |x − 1| − 

4 
ln | x 2 + 1 | − 

2 
tan−1 x + c 

What if we’re faced with something that looks like this? 

dx 
(x − 1)10 

This is actually quite simple to integrate: 

dx 1 
(x − 1)10 

= − 
9
(x − 1)−9 + c 

What about this? � 
dx 

(x2 + 1)10 

Here, we would use trig substitution: 

x = tan u and dx = sec2 udu 

and the trig identity 
tan2 u + 1 = sec2 u 

to get � � 
sec2 u du 

= cos18 u du 
(sec2 u)10 

From here, we can evaluate this integral using the methods we introduced two lectures ago. 

3 
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Lecture 30: Integration by Parts, Reduction
Formulae 

Integration by Parts 

Remember the product rule: 
(uv)� = u�v + uv� 

We can rewrite that as 
uv� = (uv)� − u�v 

Integrate this to get the formula for integration by parts: 

uv� dx = uv − u�v dx 

Example 1. tan−1 x dx. 

At first, it’s not clear how integration by parts helps. Write 

tan−1 x dx = tan−1 x(1 dx) = uv� dx· 

with 
u = tan−1 x and v� = 1. 

Therefore, 
1 

v = x and u� = 
1 + x2 

Plug all of these into the formula for integration by parts to get: 

1 
tan−1 x dx = uv� dx = (tan−1 x)x − 

1 + x2 
(x)dx 

= x tan−1 x − 
1
2 

ln |1 + x 2| + c 

Alternative Approach to Integration by Parts 

As above, the product rule: 
(uv)� = u�v + uv� 

can be rewritten as 
uv� = (uv)� − u�v 

This time, let’s take the definite integral: � b � b � b 

uv� dx = (uv)� dx − u�v dx 
a a a 

1 
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By the fundamental theorem of calculus, we can say � b � � b�b 
uv� dx = uv� u�v dx 

a 
−

a a 

Another notation in the indefinite case is 

u dv = uv − v du 

This is the same because 

dv = v� dx = uv� dx = u dv and du = u� dx = u�v dx = vu� dx = v du⇒ ⇒ 

Example 2. (ln x)dx 

1 
u = ln x; du = dx and dv = dx; v = x 

x � � � � �
1

(ln x)dx = x ln x − x dx = x ln x − dx = x ln x − x + c 
x 

We can also use “advanced guessing” to solve this problem. We know that the derivative of 
something equals ln x: 

d 
(??) = ln x 

dx 
Let’s try 

d 1
(x ln x) = ln x + x = ln x + 1 

dx 
· 
x 

That’s almost it, but not quite. Let’s repair this guess to get: 

d 
(x ln x − x) = ln x + 1 − 1 = ln x 

dx 

Reduction Formulas (Recurrence Formulas) 

Example 3. (ln x)n 
dx 

Let’s try: � �
1 

u = (ln x)n = u� = n(ln x)n−1 ⇒ 
x 

v� = dx; v = x 

Plugging these into the formula for integration by parts gives us: 

� � � � 1 
1���(ln x)ndx = x(ln x)n n(ln x)n−1 x � dx− 

� x 

Keep repeating integration by parts to get the full formula: n (n − 1) (n − 2) (n − 3) etc � 
→ → → → 

Example 4. x n e x dx Let’s try: 

u = x n = u� = nx n−1; v� = e x = v = e x ⇒ ⇒ 

2 
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Putting these into the integration by parts formula gives us: 

n n x x e x dx = x e nx n−1 e x dx− 

Repeat, going from n → (n − 1) → (n − 2) → etc. 

Bad news: If you change the integrals just a little bit, they become impossible to evaluate: � �2
tan−1 x dx = impossible 

xe
dx = also impossible 

x 

Good news: When you can’t evaluate an integral, then � 2 xe
dx 

1 x 

is an answer, not a question. This is the solution– you don’t have to integrate it! 

The most important thing is setting up the integral! (Once you’ve done that, you can always 
evaluate it numerically on a computer.) So, why bother to evaluate integrals by hand, then? Because 
you often get families of related integrals, such as 

x∞ e
F (a) = dx 

xa 
1 

where you want to find how the answer depends on, say, a. 

3 
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Arc Length 

This is very useful to know for 18.02 (multi-variable calculus). 

y

x

ds

dx
dyy=f(x)

Figure 1: Infinitesimal Arc Length ds 

dy

dx

ds

Figure 2: Zoom in on Figure 1 to see an approximate right triangle. 

In Figures 1 and 2, s denotes arc length and ds = the infinitesmal of arc length. 

ds = (dx)2 + (dy)2 = 1 + (dy/dx)2dx 

Integrating with respect to ds finds the length of a curve between two points (see Figure 3). 

To find the length of the curve between P0 and P1, evaluate: � P1 

ds 
P0 

4 
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P₀

P₁

a b

Figure 3: Find length of curve between P0 and P1. 

We want to integrate with respect to x, not s, so we do the same algebra as above to find ds in 
terms of dx. 

(ds)2 (dx)2 (dy)2 � 
dy 

�2 

= + = 1 + 
(dx)2 (dx)2 (dx)2 dx 

Therefore, �� P1 
� b � �2 

ds = 1 + 
dy 

dx 
dxP0 a 

Example 5: The Circle. x 2 + y 2 = 1 (see Figure 4). 

Figure 4: The circle in Example 1. 

5 
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We want to find the length of the arc in Figure 5: 

a

Figure 5: Arc length to be evaluated. 

y = 1 − x2 

dy −2x 1 −x 
dx 

= √
1 − x2 2

= √
1 − x2 � �2 

ds = 1 + √
1 

−
− 

x

x2 
dx 

� �2 

1 + √
1 

−
− 

x

x2 
= 1 + 

1 − 
x2 

x2 
=

1 −
1 
x

− 

2 

x

+ 
2 

x2 

=
1 − 

1 
x2 

1 
ds = dx

1 − x2 � a ⏐dx ⏐a 
s = √

1 − x2 
= sin−1 x⏐ 

0 
= sin−1 a − sin−1 0 = sin−1 a 

0 

sin s = a 

This is illustrated in Figure 6. 

6 
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a
1

1

a

s

Figure 6: s = angle in radians. 

Parametric Equations 

Example 6. 
x = a cos t 

y = a sin t 

Ask yourself: what’s constant? What’s varying? Here, t is variable and a is constant. 
Is there a relationship between x and y? Yes: 

x 2 + y 2 = a 2 cos2 t + a 2 sin2 t = a 2 

Extra information (besides the circle): 
At t = 0, 

x = a cos 0 = a and y = a sin 0 = 0 
π

At t = ,
2 

π π 
x = a cos = 0 and y = a sin = a

2 2 

Thus, for 0 ≤ t ≤ π/2, a quarter circle is traced counter-clockwise (Figure 7). 

7 
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(a,0)
t=0

(0,a)
t=π/2

Figure 7: Example 6. x = a cos t, y = a sin t; the particle is moving counterclockwise. 

Example 7: The Ellipse See Figure 8. 

x = 2 sin t; y = cos t 
2x

+ y 2 = 1( = (2 sin t)2/4 + (cos t)2 = sin2t + cos2t = 1) 
4 

⇒ 

(2,0)
t=π/2

t=0
(0,1)

Figure 8: Ellipse: x = 2 sin t, y = cos t (traced clockwise). 

Arclength ds for Example 6. 

dx = −a sin t dt, dy = a cos t dt 

ds = (dx)2 + (dy)2 = (−a sin t dt)2 + (a cos t dt)2 = (a sin t)2 + (a cos t)2 dt = a dt 

8 
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Lecture 31: Parametric Equations, Arclength,
Surface Area 

Arclength, continued 

Example 1. Consider this parametric equation: 

x = t2 y = t3 for 0 ≤ t ≤ 1 

x 3 = (t2)3 = t6; y 2 = (t3)2 = t6 = ⇒ x 3 = y 2 = ⇒ y = x 2/3 0 ≤ x ≤ 1 

ds
dy

dx

ds

dy
dx

Figure 1: Infinitesimal Arclength. 

(ds)2 = (dx)2 + (dy)2 

(ds)2 = (2t dt)2 + (3t2 dt)2 = (4t2 + 9t4)(dt)2 � �� � � �� � 
(dx)2 (dy)2 � t=1 � 1 � � 1 � 

Length = ds = 4t2 + 9t4dt = t 4 + 9t2dt 
t=0 0 0 

1 
= 

(4 + 9t2)3/2 ��� = 
1 

(133/2 − 43/2)
27 0 27 

Even if you can’t evaluate the integral analytically, you can always use numerical methods. 

1 
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Surface Area (surfaces of revolution)


y

ds

a b

y

x

Figure 2: Calculating surface area 

ds (the infinitesimal curve length in Figure 2) is revolved a distance 2πy. The surface area of the 
thin strip of width ds is 2πy ds. 

Example 2. Revolve Example 1 (x = t2, y = t3 , 0 ≤ t ≤ 1) around the x-axis. Refer to Figure 3. 

y

x

Figure 3: Curved surface of a trumpet. 

2 



� 

Lecture 31 18.01 Fall 2006 

� � 1
3 

� � 1 �2π t t 4 + 9t2 dt 4Area = 2πy ds = 
0 

���� � �� � = 2π t 4 + 9t2 dt 
y ds 0 

Now, we discuss the method used to evaluate 

t4(4 + 9t2)1/2dt 

We’re going to ignore the factor of 2π. You can reinsert it once you’re done evaluating the integral. 
We use the trigonometric substitution 

2 2 
t = tan u; dt = sec2 u du; tan2 u + 1 = sec2 u

3 3 

Putting all of this together gives us: � � � �4 � � ��1/2 � �
2 4 2 

t4(4 + 9t2)1/2 dt = tan u 4 + 9 tan2 u sec2 u du 
3 9 3 � �5 �2 

= tan4 u(2 sec u)(sec2 u du)
3 

This is a tan − sec integral. It’s doable, but it will take a long time for you to work the whole thing 
out. We’re going to stop evaluating it here. 

Example 3 Let’s use what we’ve learned to find the surface area of the unit sphere (see Figure 4). 

a
b

rotate the curve 
  by 2π radians 

x

y

. .

Figure 4: Slice of spherical surface (orange peel, only, not the insides). 
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For the top half of the sphere, � 
y = 1 − x2 

We want to find the area of the spherical slice between x = a and x = b. A spherical slice has area � x=b 

A = 2πy ds 
x=a 

From last time, 
dx 

ds = √
1 − x2 

Plugging that in yields a remarkably simple formula for A: � b � dx 
� b 

A = 
a 

2π 1 − x2 √
1 − x2 

= 
a 

2π dx 

= 2π(b − a) 

Special Cases 

For a whole sphere, a = −1, and b = 1. 

2π(1 − (−1)) = 4π 

is the surface area of a unit sphere. 

For a half sphere, a = 0 and b = 1. 

2π(1 − 0) = 2π 

4 
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Lecture 32: Polar Co-ordinates, Area in Polar

Co-ordinates


Polar Coordinates 

r

θ

Figure 1: Polar Co-ordinates. 

In polar coordinates, we specify an object’s position in terms of its distance r from the origin 
and the angle θ that the ray from the origin to the point makes with respect to the x-axis. 

Example 1. What are the polar coordinates for the point specified by (1, −1) in rectangular 
coordinates? 

r

(1,-1)

Figure 2: Rectangular Co-ordinates to Polar Co-ordinates. 

r = 
� 

12 + (−1)2 = 
√

2 
π 

θ = − 
4 

In most cases, we use the convention that r ≥ 0 and 0 ≤ θ ≤ 2π. But another common convention 
is to say r ≥ 0 and −π ≤ θ ≤ π. All values of θ and even negative values of r can be used. 

1 
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r

θ
x

y

Figure 3: Rectangular Co-ordinates to Polar Co-ordinates.


Regardless of whether we allow positive or negative values of r or θ, what is always true is:


x = r cos θ and y = r sin θ 

For instance, x = 1, y = −1 can be represented by r = −
√

2, θ =
3π 

:
4 

1 = x = −
√

2 cos 
3π 

and − 1 = y = −
√

2 sin 
3π 

4 4 

Example 2. Consider a circle of radius a with its center at x = a, y = 0. We want to find an 
equation that relates r to θ. 

(a,0)

Figure 4: Circle of radius a with center at x = a, y = 0. 

2 
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We know the equation for the circle in rectangular coordinates is 

(x − a)2 + y 2 = a 2 

Start by plugging in: 
x = r cos θ and y = r sin θ 

This gives us 
(r cos θ − a)2 + (r sin θ)2 = a 2


r 2cos2θ − 2arcosθ + a 2 + r 2sin2θ = a 2


r 2 − 2ar cos θ = 0


r = 2a cos θ 

π	 π
The range of 0 ≤ θ ≤ 

2 
traces out the top half of the circle, while − 

2 
≤ θ ≤ 0 traces out the bottom 

half. Let’s graph this. 

(a,0)

r

θ

y

x

θ = π/4

θ = 0

Figure 5: r = 2a cos θ, −π/2 ≤ θ ≤ π/2. 

At θ = 0, r = 2a = x = 2a, y = 0 

At θ = 
π

, r = 2a cos 
⇒

π 
= a

√
2

4 4 

The main issue is finding the range of θ tracing the circle once. In this case, 
−π 

< θ < 
π 
.

2 2 

π 
θ =	 − 

2 
(down) 

π 
θ = (up)

2 

π 3π
Weird range (avoid this one): 

2 
< θ < 

2 
. When θ = π, r = 2a cos π = 2a(−1) = −2a. The 

π 3π
radius points “backwards”. In the range < θ < , the same circle is traced out a second time. 

2 2 
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r=f(θ)

Figure 6: Using polar co-ordinates to find area of a generic function. 

Area in Polar Coordinates 

Since radius is a function of angle (r = f(θ)), we will integrate with respect to θ. The question 
is: what, exactly, should we integrate? � θ2 

?? dθ 
θ1 

Let’s look at a very small slice of this region: 

rdθ

r
dθ

Figure 7: Approximate slice of area in polar coordinates. 

This infinitesimal slice is approximately a right triangle. To find its area, we take: 

1 1
Area of slice ≈ 

2
(base) (height) = 

2 
r(r dθ) 

So, � θ2 1
Total Area = r 2 dθ

2θ1 
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π π
Example 3. r = 2a cos θ, and − 

2 
< θ < 

2 
(the circle in Figure 5). 

� π/2 1 2 
� π/2 

A = area = (2a cos θ)2 dθ = 2a cos2θ dθ
2−π/2 −π/2 

1 1
Because cos2 θ = + cos 2θ, we can rewrite this as

2 2 � π/2 � π/2 � π/2 

A = area = (1 + cos 2θ) dθ = a 2 dθ + a 2 cos 2θ dθ 
−π/2 −π/2 −π/2 

1 ��π/2 1
2���������0 

= πa2 + 
2 

sin 2θ� 
−π/2 

= πa2 + [sin π − sin(−π)] 

A = area = πa2 

Example 4: Circle centered at the Origin. 

r=a

Figure 8: Example 4: Circle centered at the origin 

x = r cos θ; y = r sin θ 

x 2 + y 2 = r 2 cos2 θ + r 2 sin2 θ = r 2 

The circle is x2 + y2 = a2, so r = a and 

x = a cos θ; y = a sin θ � 2π 1 1 
A = a 2 dθ = a 2 2π = πa2 .

2 2 
· 

0 
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Example 5: A Ray. In this case, θ = b. 

θ=b

Figure 9: Example 5: The ray θ = b, 0 ≤ r < ∞.


The range of r is 0 ≤ r < ∞; x = r cos b; y = r sin b.


Example 6: Finding the Polar Formula, based on the Cartesian Formula 

y

x

1/sin θ

θ

1

Figure 10: Example 6: Cartesian Form to Polar Form 

Consider, in cartesian coordinates, the line y = 1. To find the polar coordinate equation, plug 
in y = r sin θ and x = r cos θ and solve for r. 

1 
r sin θ = 1 = r = with 0 < θ < π ⇒ 

sin θ 

6 
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Example 7: Going back to (x, y) coordinates from r = f(θ). 
Start with 

1 
r = .

1 + 1 sin θ2 

Hence, 
r 

r + sin θ = 1 
2 

Plug in r = x2 + y2: 
x2 + y2 + 

y 
= 1 

2 � � �2 2 

x2 + y2 = 1 − 
y 
2

= ⇒ x 2 + y 2 = 1 − 
y 
2 

= 1 − y + 
y

4 
Finally, 

3y2 

x 2 + + y = 1 
4 

This is an equation for an ellipse, with the origin at one focus. 

Useful conversion formulas: 

r = x2 + y2 and θ = tan−1 y 
x 

Example 8: A Rose r = cos(2θ) 
The graph looks a bit like a flower: 

1

r>0

r<0

r>0

r<0 π/4

-π/4

Figure 11: Example 8: Rose 

For the first “petal” 
π π − 
4 

< θ < 
4 

Note: Next lecture is Lecture 34 as Lecture 33 is Exam 4. 

7 
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Exam 4 Review 

1. Trig substitution and trig integrals. 

2. Partial fractions. 

3. Integration by parts. 

4. Arc length and surface area of revolution 

5. Polar coordinates 

6. Area in polar coordinates. 

Questions from the Students 

•	 Q: What do we need to know about parametric equations? 

•	 A: Just keep this formula in mind: 

� �2 � �2
dx dy

ds = + 
dt dt 

Example: You’re given 
x(t) = t4 

and 
y(t) = 1 + t 

Find s (length). �

ds = (4t3)2 + (1)2dt


Then, integrate with respect to t. 

•	 Q: Can you quickly review how to do partial fractions? 

•	 A: When finding partial fractions, first check whether the degree of the numerator is greater 
than or equal to the degree of the denominator. If so, you first need to do algebraic long-
division. If not, then you can split into partial fractions. 

Example. 
x2 + x + 1


(x − 1)2(x + 2)


We already know the form of the solution: 

x2 + x + 1 A B C 
= + +

(x − 1)2(x + 2) x − 1 (x − 1)2 x + 2 

There are two coefficients that are easy to find: B and C. We can find these by the cover-up 
method. 

12 + 1 + 1 3 
B = = (x 1)

1 + 2 3 
→ 

1 
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To find C, 
(−2)2 − 2 + 1 1 

C = = 
(−2 − 1)2 3

(x → −2) 

To find A, one method is to plug in the easiest value of x other than the ones we already used 
(x = 1, −2). Usually, we use x = 0. 

1 A 1 1/3 
= + +

(−1)2(2) −1 (−1)2 2 

and then solve to find A. 

The Review Sheet handed out during lecture follows on the next page. 

2 



����� 
� 

� � � 

� 

� 

� 

Lecture 32: Exam 4 Review 18.01 Fall 2006 

Exam 4 Review Handout 

1. Integrate by trigonometric substitution; evaluate the trigonometric integral and work 
backwards to the original variable by evaluating trig(trig−1) using a right triangle: 

a) a2 − x2 use x = a sin u, dx = a cos u du. 

b) a2 + x2 use x = a tan u, dx = a sec2 u du


c) x2 − a2 use x = a sec u, dx = a sec u tan u du


2. Integrate rational functions P/Q (ratio of polynomials) by the method of partial fractions: 
If the degree of P is less than the degree of Q, then factor Q completely into linear and quadratic 
factors, and write P/Q as a sum of simpler terms. For example, 

3x2 + 1 A B1 B2 Cx + D 
= + + +

(x − 1)(x + 2)2(x2 + 9) x − 1 (x + 2) (x + 2)2 x2 + 9 

Terms such as D/(x2 + 9) can be integrated using the trigonometric substitution x = 3 tan u. 

This method can be used to evaluate the integral of any rational function. In practice, the 
hard part turns out to be factoring the denominator! In recitation you encountered two other steps 
required to cover every case systematically, namely, completing the square1 and long division.2 

3. Integration by parts: � b 

uv�dx = uv 

b � b 

a 
− u�vdx 

a 
a 

This is used when u�v is simpler than uv�. (This is often the case if u� is simpler than u.) 

4. Arclength: ds = dx2 + dy2. Depending on whether you want to integrate with respect to 
x, t or y this is written 

ds = 1 + (dy/dx)2 dx; ds = (dx/dt)2 + (dy/dt)2 dt; ds = (dx/dy)2 + 1 dy 

5. Surface area for a surface of revolution: 

a) around the x-axis: 2πyds = 2πy 1 + (dy/dx)2 dx (requires a formula for y = y(x)) 

b) around the y-axis: 2πxds = 2πx (dx/dy)2 + 1 dy (requires a formula for x = x(y)) 

6. Polar coordinates: x = r cos θ, y = r sin θ (or, more rarely, r = x2 + y2, θ = tan−1(y/x)) 

a) Find the polar equation for a curve from its equation in (x, y) variables by substitution. 

b) Sketch curves given in polar coordinates and understand the range of the variable θ (often 
in preparation for integration). 

7. Area in polar coordinates: � θ2 1 
r 2dθ

2θ1 

(Pay attention to the range of θ to be sure that you are not double-counting regions or missing 
them.) 

1For example, we rewrite the denominator x2 + 4x + 13 = (x + 2)2 + 9 = u2 + a2 with u = x + 2 and a = 3. 
2Long division is used when the degree of P is greater than or equal to the degree of Q. It expresses P (x)/Q(x) = 

P1(x) + R(x)/Q(x) with P1 a quotient polynomial (easy to integrate) and R a remainder. The key point is that the 
remainder R has degree less than Q, so R/Q can be split into partial fractions. 

3 
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The following formulas will be printed with Exam 4


sin2 x + cos2 x = 1; sec2 x = tan2 x + 1


sin2 x = 
1
2 
− 

1
2 

cos 2x; cos2 x = 
1
2 

+ 
1
2 

cos 2x


cos 2x = cos2 x − sin2 x; sin 2x = 2 sin x cos x


d 2 d d 1 d 1

dx 

tan x = sec x; 
dx 

sec x = sec x tan x; 
dx 

tan−1 x = 
1 + x2 

; 
dx 

sin−1 x = √
1 − x2 

tan x dx = − ln(cos x) + c; sec x dx = ln(sec x + tan x) + c 

See the next page for a review on integration of rational functions. 

4
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Postscript: Systematic integration of rational functions 

For a general rational function P/Q, the first step is to express P/Q as the sum of a polynomial 
and a ratio in which the numerator has smaller degree than the denominator. 

For example, 
x3 

= x + 2 + 
3x − 2 

x2 − 2x + 1 x2 − 2x + 1 

(To carry out this long division, do not factor the denominator Q(x) = x2 − 2x + 1, just leave it 
alone.) The quotient x + 2 is a polynomial and is easy to integrate. The remainder term 

3x − 2 
(x − 1)2 

has a numerator 3x − 2 of degree 1 which is less than the degree 2 of the denominator (x − 1)2 . 
Therefore there is a partial fraction decomposition. In fact, 

3x − 2 
=

(3x − 3) + 1 
=

3
+ 

1 
(x − 1)2 (x − 1)2 x − 1 (x − 1)2 

In general, if P has degree n and Q has degree m, then long division gives 

P (x) R(x)
= P1(x) + 

Q(x) Q(x) 

in which P1, the quotient in the long division, has degree n − m and R, the remainder in the long 
division, has degree at most m − 1. 

Evaluation of the “simple” pieces 

The integral � 

(x − 
dx

a)n 
= 

n 
−
− 
1
1
(x − a)1−n + c 

if n = 1 and ln x − a + c if n = 1. On the other hand the terms 

xdx dx
and

(Ax2 + Bx + C)n (Ax2 + Bx + C)n 

are handled by first completing the square: 

B2 

Ax2 + Bx + C = A(x − B/2A)2 + C − 
4A 

Using the variable u = 
√

A(x − B/2A) yields combinations of integrals of the form 

udu du
and

(u2 + k2)n (u2 + k2)n 

The first integral is handled by the substitution w = u2 + k2 , dw = 2udu. The second integral can 
be worked out using the trigonometric substitution u = k tan θ du = k sec2 θdθ. This then leads to 
sec-tan integrals, and the actual computation for large values of n are long. 

There are also other cases that we will not cover systematically. Examples are below: 

1. If Q(x) = (x − a)m(x − b)n, then the expression is 

A1 A2 Am B1 B2 Bn+ + + + + + + 
x − a (x − a)2 

· · · 
(x − a)m x − b (x − b)2 

· · · 
(x − b)n 

5 
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2. If there are quadratic factors like (Ax2 + Bx + C)p, one gets terms 

a1x + b1 a2x + b2x apx + bp+ + + 
Ax2 + Bx + C (Ax2 + Bx + C)2 

· · · 
(Ax2 + Bx + C)p 

for each such factor. (To integrate these quadratic pieces complete the square and make a 
trigonometric substitution.) 

6 
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Lecture 34: Indeterminate Forms - L’Hôpital’s Rule 

L’Hôpital’s Rule 

(Two correct spellings: “L’Hôpital” and “L’Hospital”) 

Sometimes, we run into indeterminate forms. These are things like 

0 
0 

and ∞ 
∞

For instance, how do you deal with the following? 

lim 
x3 − 1 

= 
0

?? 
x 1 x2 − 1 0→

Example 0. One way of dealing with this is to use algebra to simplify things: 

lim 
x3 − 1 

= lim 
(x − 1)(x2 + x + 1) 

= lim 
x2 + x + 1 

= 
3 

x→1 x2 − 1 x→1 (x − 1)(x + 1) x→1 x + 1 2 

In general, when f(a) = g(a) = 0, 

f(x) 
f(x) 

x
lim 

a 

f(x) − f(a) 
f �(a)

lim = lim x − a = 
→ x − a = 

x→a g(x) x→a g(x)	
lim 

g(x) − g(a) g�(a) 
x ax − a → x − a 

This is the easy version of L’Hôpital’s rule: 

f(x) f �(a)
lim = 
x→a g(x) g�(a) 

Note: this only works when g�(a) = 0� ! 

In example 0, 
f(x) = x 3 = 1; g(x) = x 2 − 1


f �(x) = 3x 2; g�(x) = 2x = f �(1) = 3; g�(1) = 2
⇒ 

The limit is f �(1)/g�(1) = 3/2. Now, let’s go on to the full L’Hôpital rule. 

1 
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Example 1. Apply L’Hôpital’s rule (a.k.a. “L’Hop”) to 

x
lim 

15 − 1 
x 1 x3 → − 1 

to get 

lim 
x15 − 1 

= lim 
15x14 

= 
15 

= 5 
x→1 x3 − 1 x→1 3x2 3 

Let’s compare this with the answer we’d get if we used linear approximation techniques, instead of 
L’Hôpital’s rule: 

x 15 − 1 ≈ 15(x − 1) 

(Here, f(x) = x15 − 1, a = 1, f(a) = b = 0, m = f �(1) = 15, and f(x) ≈ m(x − a) + b.) 
Similarly, 

x 3 − 1 ≈ 3(x − 1) 

Therefore, 
x15 − 1 15(x − 1) 

= 5 
x3 − 1 

≈ 
3(x − 1) 

Example 2. Apply L’Hop to 
sin 3x

lim 
x 0 x→

to get 
3 cos 3x

lim = 3 
x 0 1→

This is the same as 
d 

sin(3x) = 3 cos(3x) = 3 
dx x=0 x=0 

Example 3. 

lim 
sin x − cos x 

= lim 
cos x + sin x 

=
1

+
1

= 
√

2 
π π π 
4 4x→ x − 4 x→ 1 

√
2 

√
2 

f(x) = sin x − cos x, f �(x) = cos x + sin x 

= 
√

2f � 
π 
4 

Δy 0
Remark: Derivatives lim are always a type of limit. 

Δx 0 Δx 0→

Example 4. lim 
cos x − 1 

. 
x 0 x→

Use L’Hôpital’s rule to evaluate the limit: 

lim 
cos x − 1 

= lim 
− sin x 

= 0 
x 0 x x 0 x→ →

2 
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Example 5. lim 
cos 

x

x 
2

− 1 
. 

x 0→

cos x − 1 cos x − 1 − sin x − cos x 1 
x
lim 

0 x2 
= 

x
lim 

0 x2 
= 

x
lim 

0 2x 
= 

x
lim 

0 2
= − 

2→ → → →

Just to check, let’s compare that answer to the one we would get if we used quadratic approximation 
techniques. Remember that: 

1 
cos x ≈ 1 − x 2 (x ≈ 0)

2 
1 1 

cos x − 1 1 − x 2 − 1 (− )x 2 
12 = 2 

x2 
≈ 

x2 x2 
= − 

2 

sin x
Example 6. lim . 

x 0 x2 →

sin x cos x
lim = lim By L’Hôpital’s rule 
x 0 x2 x 0 2x→ →

If we apply L’Hôpital again, we get 
sin x 

x
lim 

0 
− 

2 
= 0 

→

But this doesn’t agree with what we get from taking the linear approximation: 

sin x x 1 
x2 

≈ 
x2 

= 
x 
→∞ as x → 0+ 

We can clear up this seeming paradox by noting that 

cos x 1
lim = 
x→0 2x 0 

0
The limit is not of the form , which means L’Hôpital’s rule cannot be used. The point is: look 

0 
before you L’Hôp! 

More “interesting” cases that work. 

It is also okay to use L’Hôpital’s rule on limits of the form 
∞ 

, or if x → ∞, or x → −∞. Let’s 
∞

apply this to rates of growth. Which function goes to ∞ faster: x, e ax, or ln x? 

Example 7. For a > 0, 
ax axe ae

lim = lim = +∞
x→∞ x x→∞ 1 

So e ax grows faster than x (for a > 0). 

Example 8. 

ax ax 2 ax 10 axe ae c e a e
lim 

x10 
= by L’Hôpital = lim 

10x9 
= lim 

10 9x8 
= · · · = lim 

10! 
= ∞

x→∞ x→∞ x→∞ x→∞· 

3 
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You can apply L’Hôpital’s rule ten times. There’s a better way, though: � 
eax �1/10 

eax/10 

= 
x10 x � �10 ax ax/10 

lim 
x

e
10 

= lim 
e

= ∞10 = ∞
x→∞ x→∞ x 

Example 9. 

lim 
ln x 

= lim 
1/x 

= lim 3x−1/3 = 0 
x→∞ x1/3 x→∞ 1/3x−2/3 x→∞ 

Combining the preceding examples, ln x � x 1/3 � x � x 10 � e ax (x →∞, a > 0) 

L’Hôpital’s rule applies to 
0 
and 

∞ 
. But, we sometimes face other indeterminate limits, such 

0 ∞
as 1∞, 00, and 0 · ∞. Use algebra, exponentials, and logarithms to put these in L’Hôpital form. 

Example 10. lim x x for x > 0. 
x 0→

Because the exponent is a variable, use base e: 

lim x x = lim e x ln x 

x 0 x 0→ →

First, we need to evaluate the limit of the exponent 

lim x ln x 
x 0→

This limit has the form 0 · ∞. We want to put it in the form 
0 
or 
∞ 

.
0 ∞

0
Let’s try to put it into the form:

0 
x 

1/ ln x 

1
We don’t know how to find lim , though, so that approach isn’t helpful. 

x→0 ln x 

Instead, let’s try to put it into the 
∞ 

form:

∞


ln x 
1/x 

Using L’Hôpital’s rule, we find 

lim x ln x = lim 
ln x 

= lim 
1/x 

= lim(−x) = 0 
x 0 x 0 1/x x 0 −1/x2 x 0→ → → →

Therefore, 
lim(x ln x)

lim x x = lim e x ln x = e →0 = e 0 = 1 x
x 0 x 0→ →

4 
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Lecture 35: Improper Integrals 

Definition. 

An improper integral, defined by 

∞ � M 

f(x)dx = lim f(x)dx 
a M→∞ a 

is said to converge if the limit exists (diverges if the limit does not exist). 

∞ 

e−kxdx = 1/k (k > 0)Example 1. 
0 � M M 

e−kxdx = (−1/k)e−kx = (1/k)(1 − e−kM ) 
0 

0 

Taking the limit as M →∞, we find e−kM → 0 and 

∞ 

e−kxdx = 1/k 
0 

We rewrite this calculation more informally as follows, 

0 

∞ 

e−kxdx = (−1/k)e−kx 
∞ 

0 

= (1/k)(1 − e−k∞) = 1/k (since k > 0) 

∞ 

e−kxdx = 1/k has an easier formula than the Note that the integral over the infinite interval � M 
0 

corresponding finite integral e−kxdx = (1/k)(1−e−kM ). As a practical matter, for large M , the 
0 

term e−kM is negligible, so even the simpler formula 1/k serves as a good approximation to the finite

integral. Infinite integrals are often easier than finite ones, just as infinitesimals and derivatives are

easier than difference quotients.


Application: Replace x by t = time in seconds in Example 1.

R = rate of decay = number of atoms that decay per second at time 0.

At later times t > 0 the decay rate is Re−kt (smaller by an exponential factor e−kt)


Eventually (over time 0 ≤ t < ∞) every atom decays. So the total number of atoms N is 
calculated using the formula we found in Example 1, 

∞ 

Re−ktdt = R/k N = 
0 

The half life H of a radioactive element is the time H at which the decay rate is half what it was at 
the start. Thus 

e−kH = 1/2 = ⇒ −kH = ln(1/2) = ⇒ k = (ln 2)/H 

1 
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Hence 
R = Nk = N(ln 2)/H 

Let us illustrate with Polonium 210, which has been in the news lately. The half life is 138 days 
or 

H = (138days)(24hr/day)(602sec/hr) = (138)(24)(60)2seconds 

Using this value of H, we find that one gram of Polonium 210 emits (1 gram)(6 × 1023/210 
atoms/gram)(ln2)/H = 1.661014 decays/sec ≈ 4500 curies 

At 5.3 MeV per decay, Polonium gives off 140 watts of radioactive energy per gram (white hot). 
Polonium emits alpha rays, which are blocked by skin but when ingested are 20 times more dangerous 
than gamma and X-rays. The lethal dose, when ingested, is about 10−7 grams. 

∞ 

dx/(1 + x 2) = π/2.Example 2. 
0 

We calculate, � M M 
dx 

= tan−1 = tan−1 M π/2→x
1 + x2 

0 
0 

as M →∞. (If θ = tan−1 M then θ → π/2 as M →∞. See Figures 1 and 2.) 

x

y = tan(x)

M

θ

x = π/2

x = -π/2

.

Figure 1: Graph of the tangent function, M = tan θ. 

2 
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x = tan(y)

y = arctan(x)

M

θ

y = -π/2

y= π/2 .

Figure 2: Graph of the arctangent function, θ = tan−1 M . 

∞ 

e−x 2 

dx = 
√

π/2Example 3. 
0 

Recall that we already computed this improper integral (by computing a volume in two ways, slices 
and the method of shells). This shows vividly that a finite integral can be harder to understand 
than its infinite counterpart: � M 

2 

e−x dx 
0 

can only evaluated numerically. It has no elementary formula. By contrast, we found an explicit 
formula when M = ∞. � ∞
Example 4. dx/x 

1 � M 

1 
dx/x = ln x 

M 

= ln M − ln 1 = ln M →∞ 
1 

as M →∞. This improper integral is infinite (called divergent or not convergent). 

∞ 

dx/xp (p > 1)Example 5. 
1 

1−p 
� M M 

dx/xp = (1/(1 − p))x = (1/(1 − p))(M1−p − 1) → 1/(p − 1) 
1 

1 

as M →∞ because 1 − p < 0. Thus, this integral is convergent. 

∞ 

dx/xp (0 < p < 1)Example 6. 
1 

This is very similar to the previous example, but diverges � M 

1 
dx/xp = (1/(1 − p))x 1−p 

M 

= (1/(1 − p))(M1−p − 1) →∞ 
1 

as M →∞ because 1 − p > 0. 

3 
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Determining Divergence and Convergence 

To decide whether an integral converges or diverges, don’t need to evaluate. Instead one can compare 
it to a simpler integral that can be evaluated. 

∞ dx
The General Story for powers: 

xp
1 

From Examples 4, 5 and 6 we know that this diverges (is infinite) for 0 < p ≤ 1 and converges (is 
finite) for p > 1. 

The comparison of integrals says that a larger function has a larger integral. If we restrict 
ourselves to nonnegative functions, then even when the region is unbounded, as in the case of an 
improper integral, the area under the graph of the larger function is more than the area under the 
graph of the smaller one. Consider 0 ≤ f(x) ≤ g(x) (as in Figure 3) 

g(x)f(x)

x  = a

y

x

Figure 3: The area under f(x) is less than the area under g(x) for a ≤ x < ∞. 

∞ ∞
If g(x) dx converges, then so does f(x) dx. (In other words, if the area under g is finite, 

a a 
then the area under f , being smaller, must also be finite.) 

∞ ∞
If f(x) dx diverges, then so does g(x) dx. (In other words, if the area under f is infinite, 

a a 
then the area under g, being larger, must also be infinite.) 

The way comparison is used is by replacing functions by simpler ones whose integrals we can 
calculate. You will have to decide whether you want to trap the function from above or below. This 
will depend on whether you are demonstrating that the integral is finite or infinite. 

4 
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∞ dx
Example 7. It is natural to try the comparison √

x3 + 1 0 

1 1 
x3/2

√
x3 + 1 

≤ 

But the area under x−3/2 on the interval 0 < x < ∞, 

∞ dx 
x3/2 

0 

turns out to be infinite because of the infinite behavior as x 0. We can rescue this comparison by 
excluding an interval near 0. 

→ 

� � 1 �∞ dx dx ∞ dx 

0 
√

x3 + 1 
= 

0 
√

x3 + 1 
+ 

1 
√

x3 + 1 

The integral on 0 < x < 1 is a finite integral and the second integral now works well with comparison, 

∞ dx ∞ dx 

1 
√

x3 + 1 
≤ 

1 x3/2 
< ∞ 

because 3/2 > 1. 

∞ 
3

Example 8. e−x dx 
0 

For x ≥ 1, x3 ≥ x, so 
∞ 

3 
∞ 

e−x dx ≤ e−xdx = 1 < ∞
1 1 

3
Thus the full integral from 0 ≤ x < ∞ of e−x converges as well. We can ignore the interval 

3
0 ≤ x ≤ 1 because it has finite length and e−x does not tend to infinity there. 

Limit comparison: 

Suppose that 0 ≤ f(x) and lim f(x)/g(x) ≤ 1. Then f(x) ≤ 2g(x) for x ≥ a (some large a).� � x→∞

∞ ∞


Hence f(x) dx ≤ 2 g(x) dx. 
a a 

∞ (x + 10) dx
Example 9. 

x2 + 1 0 
The limiting behavior as x →∞ is 

(x + 10)dx x 
=

1 
x2 + 1 

� 
x2 x 

Since 
∞ dx 

= ∞, the integral 
∞ (x + 10) dx 

also diverges. 
1 x 0 x2 + 1 

5 
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∞
Example 10 (from PS8). x n e−xdx 

0 
This converges. To carry out a convenient comparison requires some experience with growth rates 
of functions. 

x n << ex not enough. Instead use x n/ex/2 0 (true by L’Hop). It follows that → 

x n << ex/2 = x n e−x << ex/2 e−x = e−x/2 ⇒ 

∞
Now by limit comparison, since e−x/2dx converges, so does our integral. You will deal with this 

0 
integral on the problem set. 

Improper Integrals of the Second Type 
� 1 dx √

x0 

1
We know that 0.√

x 
→∞ as x → 

� 1 � 1dx √
x 

= 
a
lim 

0+ 
x−1/2dx 

0 → a � 1 �1 
x−1/2dx = 2x 1/2 �� = 2 − 2a 1/2 

aa 

As a 0, 2a1/2 0. So, → → � 1


x−1/2 dx = 2

0


Similarly, � 1 1 
x−pdx = 

−p + 1 0 

for all p < 1. 
1

For p = ,
2 

1 � � = 2 
1 − 
2 

+ 1 

However, for p ≥ 1, the integral diverges. 

6 
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Lecture 36: Infinite Series and Convergence Tests 

Infinite Series 

Geometric Series 

A geometric series looks like 
1 + a + a 2 + a 3 + ... = S 

There’s a trick to evaluate this: multiply both sides by a: 

a + a 2 + a 3 + ... = aS 

Subtracting, 
(1 + a + a 2 + a 3 + ) − (a + a 2 + a 3 + ) = S − aS· · · · · · 

In other words, 
1

1 = S − aS = ⇒ 1 = (1 − a)S = ⇒ S =
1 − a 

This only works when |a| < 1, i.e. −1 < a < 1. 

a = 1 can’t work: 
1 + 1 + 1 + ... = ∞ 

a = −1 can’t work, either: 

1 1
1 − 1 + 1 − 1 + ... =�

1 − (−1) 
= 

2 

Notation 

Here is some notation that’s useful for dealing with series or sums. An infinite sum is written: 

∞

ak = a0 + a1 + a2 + ... 
k=0 

The finite sum 
n

Sn = ak = a0 + ... + an 

k=0 

is called the “nth partial sum” of the infinite series. 

1 
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Definition 
∞

ak = s 
k=0 

means the same thing as 
n

lim Sn = s, where Sn = ak 
n→∞ 

k=0 

We say the series converges to s, if the limit exists and is finite. The importance of convergence is 
illustrated here by the example of the geometric series. If a = 1, S = 1 + 1 + 1 + ... = ∞. But 

S − aS = 1 or ∞−∞ = 1 

does not make sense and is not usable! 

Another type of series: 

∞ 1 
np 

n=1 

We can use integrals to decide if this type of series converges. First, turn the sum into an integral: 

∞ 1 
� ∞ dx 

np 
∼ 

xp 
n=1 1 

If that improper integral evaluates to a finite number, the series converges. 

Note: This approach only tells us whether or not a series converges. It does not tell us what 
number the series converges to. That is a much harder problem. For example, it takes a lot of work 
to determine � π2∞ 1 

= 
n2 6 

n=1 

Mathematicians have only recently been able to determine that 

∞ 1 
n3 

n=1 

converges to an irrational number! 

Harmonic Series 

∞ 1 
� ∞ dx 

n 
∼ 

1 x 
n=1 

We can evaluate the improper integral via Riemann sums. 

We’ll use the upper Riemann sum (see Figure 1) to get an upper bound on the value of the 
integral. 

2 
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1 2 3

1

½ ⅓

1

½ 

y=⁄x

Figure 1: Upper Riemann Sum. 

� N dx 1 1 

1 x 
≤ 1 + 

2 
+ ... + 

N − 1
= sN −1 ≤ sN 

We know that � N dx 
= ln N 

1 x 

As N →∞, ln N →∞, so sN →∞ as well. In other words, 
∞ 1 

n 
n=1 

diverges. 

Actually, sN approaches ∞ rather slowly. Let’s take the lower Riemann sum (see Figure 2). 

1 2 3

y=⁄x

4

½
⅓

¼

Therefore, 

Figure 2: Lower Riemann Sum. 

sN = 1 + 
1 
2 

+ ... + 
1 
N 

= 1 + 
N� 

n=2 

1 
n 
≤ 1 + 

� N 

1 

ln N < sN < 1 + ln N 

dx 
x 

= 1 + ln N 

3 



����� 
� ����� 

�

� 

� � 

� 

Lecture 36 18.01 Fall 2006 

Integral Comparison 

1
Consider a positive, decreasing function f(x) > 0. (For example, f(x) = )

xp 

∞� 

=1n

f(n) − 
1 

∞ 

f(x)dx < f(1) 

So, either both of the terms converge, or they both diverge. This is what we mean when we say 

∞

np 
∼ 

1 xp 

� 

=1n

1 ∞ dx 

∞

Lots of fudge room: in comparison. 

� 

=1n

Therefore, 
1 

diverges for p ≤ 1 and converges for p > 1. 
np 

∞

n=1 

1
√
n2 + 10


diverges, because 
1 1 1 √

n2 + 10 
∼ 

(n2)1/2 
= 

n 

Limit comparison: 
If f(x) ∼ g(x) as x →∞, then f(n) and g(n) either both converge or both diverge. 

What, exactly, does f(x) ∼ g(x) mean? It means that 

f(x)
lim = c 

x→∞ g(x) 

where 0 < c < ∞. 

Let’s check: does the following series converge? 

∞

√
n5 − 10 

n=1 

n n 1 
= 

n5/2 n3/2
√

n5 − 10 
∼ = n−3/2 

3
Since > 1, this series does converge. 

2 

n 

4 
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Playing with blocks 

At this point in the lecture, the professor brings out several long, identical building blocks. 

Do you think it’s possible to stack the blocks like this? 

Top block is farther out
than the bottom block.

Figure 3: Collective center of mass of upper blocks is always over the base block. 

In order for this to work, you want the collective center of mass of the upper blocks always to be 
over the base block. 

The professor successfully builds the stack. 

Is it possible to extend this stack clear across the room? 

The best strategy is to build from the top block down. 
Let C0 be the left end of the first (top) block. 
Let C1 = the center of mass of the first block (top block). 
Put the second block as far to the right as possible, namely, so that it’s left end is at C1 (Figure 4). 
Let C2 = the center of mass of the top two blocks. 
Strategy : put the left end of the next block underneath the center of mass of all the previous ones 
combined. (See Figure 5). 

5 
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C0 C1 C2

2

1
1/2

Figure 4: Stack of 2 Blocks. 

C0 C1 C2

2

1
1/2

C3

1/3

1

2

3

Figure 5: Stack of 3 Blocks. Left end of block 3 is C2 = center of mass of blocks 1 and 2. 

C0 = 0


C1 = 1


1

C2 = 1 + 

2


nCn + 1(Cn + 1) (n + 1)Cn + 1 1

Cn+1 = = = Cn + 

n + 1 n + 1 n + 1


1 1

C3 = 1 + +

2 3

1 1 1


C4 = 1 + + +
2 3 4


1 1 1 1

C5 = 1 + + + + > 2


2 3 4 5


6 



Lecture 36 18.01 Fall 2006 

}n

n+1 block

center of mass of 
the first n blocks

Figure 6: Stack of n + 1 Blocks. 

So yes, you can extend this stack as far (horizontally) as you want — provided that you have enough 
blocks. Another way of looking at this problem is to say 

N� 1 
= SN 

n 
n=1 

Recall the Riemann Sum estimation from the beginning of this lecture: 

ln N < SN < (ln N) + 1 

as N →∞, SN →∞. 

How high would this stack of blocks be if we extended it across the two lab tables here at the 
front of the lecture hall? The blocks are 30 cm by 3 cm (see Figure 7). One lab table is 6.5 blocks, 
or 13 units, long. Two tables are 26 units long. There will be 26 − 2 = 24 units of overhang in the 
stack. 

30 cm

3 cm

Figure 7: Side view of one block. 

If ln N = 24, then N = e 24 . 

Height = 3 cm e 24 ≈ 8 × 108 m· 

That height is roughly twice the distance to the moon. 

If you want the stack to span this room (∼ 30 ft.), it would have to be 1026 meters high. That’s 
about the diameter of the observable universe. 

7 
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Lecture 37: Taylor Series 

General Power Series 

What is cos x anyway? 

Recall: geometric series 

1
1 + a + a 2 + = for a < 1· · · 

1 − a 
| |

General power series is an infinite sum: 

f(x) = a0 + a1x + a2x 2 + a3x 3 + · · · 

represents f when x < R where R = radius of convergence. This means that for x < R, |anx 0| | 
n

| | n| → 
as n → ∞ (“geometrically”). On the other hand, if 

1
|x| > R, then 

1
|anx | does not tend to 0. For 

example, in the case of the geometric series, if |a| =
2 
, then |a n| =

2n 
. Since the higher-order terms 

get increasingly small if |a| < 1, the “tail” of the series is negligible. 

nExample 1. If a = −1, |a | = 1 does not tend to 0. 

1 − 1 + 1 − 1 + · · · 

The sum bounces back and forth between 0 and 1. Therefore it does not approach 0. Outside the 
interval −1 < a < 1, the series diverges. 

Basic Tools 

Rules of polynomials apply to series within the radius of convergence. 

Substitution/Algebra 

1 
= 1 + x + x 2 +

1 − x 
· · · 

Example 2. x = -u. 

1 
1 + u 

= 1 − u + u 2 − u 3 + · · · 

Example 3. x = −v2 . 

1 + 
1 
v2 

= 1 − v 2 + v 4 − v 6 + · · · 

1 
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Example 4. � � � �
1 1 

1 − x 1 − x 
= (1 + x + x 2 + · · · )(1 + x + x 2 + · · · ) 

Term-by-term multiplication gives: 
1 + 2x + 3x 2 + · · · 
1

Remember, here x is some number like . As you take higher and higher powers of x, the result 
2 

gets smaller and smaller. 

Differentiation (term by term) 

d 1 d � � 
= 1 + x + x 2 + x 3 + 

dx 1 − x dx 
· · · 

1 
(1 − x)2 

= 0 + 1 + 2x + 3x 2 + · · · where 1 is a0, 2 is a1 and 3 is a2 

Same answer as Example 4, but using a new method. 

Integration (term by term) 

f(x) dx = c + a0 + 
a1 

x 2 + 
a2 

x 3 +
2 3 

· · · 

where 
f(x) = a0 + a1x + a2x 2 + · · · 

du
Example 5. 

1 + u 

1 + 
1 

u 
= 1 − u + u 2 − u 3 + · · · 

du u2 u3 u4 

1 + u 
= c + u − 

2
+

3 
− 

4
+ · · · 

x du x2 x3 x4 

ln(1 + x) = 
1 + u 

= x − 
2

+
3

+
40 

So now we know the series expansion of ln(1 + x). 

Example 6. Integrate Example 3. 

1 
1 + v2 

= 1 − v 2 + v 4 − v 6 + · · · 

dv v3 v5 v7 

1 + v2 
= c + v − 

3
+

5 
− 

7
+ · · · 

x dv x3 x5 x7 

tan−1 x = 
1 + v2 

= x − 
3

+
5 
− 

7
+ · · · 

0 

2 
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Taylor’s Series and Taylor’s Formula 

If f(x) = a0 + a1x + a2x
2 + , we want to figure out what all these coefficients are. · · · 

Differentiating, 
f �(x) = a1 + 2a2x + 3a3x 2 + · · · 

f ��(x) = (2)(1)a2 + (3)(2)a3x + (4)(3)a4x 2 + · · · 

f ���(x) = (3)(2)(1)a3 + (4)(3)(2)a4x + · · · 

Let’s plug in x = 0 to all of these equations. 

f(0) = a0; f �(0) = a1; f ��(0) = 2a2; f ���(0) = (3!)a3 

Taylor’s Formula tells us what the coefficients are: 

f (n)(0) = (n!)an 

Remember, n! = n(n − 1)(n − 2) (2)(1) and 0! = 1. Coefficients an are given by: · · · 

1 
an = f (n)(0) 

n! 

xExample 7. f(x) = e . 

f �(x) = e x 

f ��(x) = e x 

xf (n)(x) = e 

f (n)(0) = e 0 = 1 

1
Therefore, by Taylor’s Formula an = and 

n! 

1 1 1 1 
e x = + x + x 2 + x 3 +

0! 1! 2! 3! 
· · · 

Or in compact form, � n∞
x

e x = 
n! 

n=0 

Now, we can calculate e to any accuracy: 

1 1 1 1 
e = 1 + 1 + + + + +

2 3! 4! 5! 
· · · 

Example 7. f(x) = cos x. 

f �(x) = − sin x 

f ��(x) = − cos x 

3 
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f ���(x) = sin x


f (4)(x) = cos x


f(0) = cos(0) = 1


f �(0) = − sin(0) = 0


f ��(0) = − cos(0) = −1


f ���(0) = sin(0) = 0


Only even coefficients are non-zero, and their signs alternate. Therefore, 

cos x = 1 − 
1
2 
x 2 + 

4!
1 

x 4 − 
6!
1 

x 6 + 
8!
1 

x 8 + · · · 

Note: cos(x) is an even function. So is this power series — as it contains only even powers of x. 

There are two ways of finding the Taylor Series for sin x. Take derivative of cos x, or use Taylor’s 
formula. We will take the derivative: 

− sin x = 
d 

cos x = 0 − 2
1 

x +
4 

x 3 6 
x 5 +

8 
x 7 + 

dx 2 4! 
− 

6! 8! 
· · · 

3 5 7x x x
= −x + 

3! 
− 

5! 
+ 

7! 
+ · · · 

3 5 7x x x
sin(x) = x − + +

3! 5! 
− 

7! 
· · · 

Compare with quadratic approximation from earlier in the term: 

cos x ≈ 1 − 
2
1 
x 2 sin x ≈ x 

We can also write: � 2k 0 2 
2 +

(2k)! 0! 2! 
· · · 

2 
· · · cos x = 

∞
x

(−1)k = (−1)0 x + (−1)2 x + = 1 − 
1 
x 

k=0 

� 2k+1∞
x

sin x = 
(2k + 1)!

(−1)k ← n = 2k + 1 
k=0 

Example 8: Binomial Expansion. f(x) = (1 + x)a 

(1 + x)a = 1 + 
a
x + 

a(a − 1) 
x 2 + 

a(a − 1)(a − 2) 
x 3 +

1 2! 3! 
· · · 

4 
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Taylor Series with Another Base Point 

A Taylor series with its base point at a (instead of at 0) looks like: 

f(x) = f(b) + f �(b)(x − b) + 
f ��(b)

(x − b)2 + 
f (3)(b)

(x − b)3 + ...
2 3! 

Taylor series for 
√

x. It’s a bad idea to expand using b = 0 because 
√

x is not differentiable at x = 0.

Instead use b = 1. � � � �


1 1

1 2 2 

− 1

x 1/2 = 1 + 

2
(x − 1) + 

2!
(x − 1)2 + · · · 

5
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Lecture 38: Final Review 

Review: Differentiating and Integrating Series. 

∞

If f(x) = anx n, then 
n=0 

� � n+1∞ � ∞
anx

f �(x) = nanx n−1 and f(x)dx = C + 
n + 1 

n=1 n=0 

Example 1: Normal (or Gaussian) Distribution. 

x x 

e−t2 

dt = 1 − t2 +
(−

2! 
t2)2 

+
(−

3! 
t2)3 

+ · · · dt 
0 0 

x t4 t6 t8 

= 1 − t2 + 
2! 
− 

3! 
+ 

4! 
− ... dt 

0 

x3 1 x5 1 x7 

= x − 
3 

+
2! 5 

− 
3! 7 

+ ... 

x 
2

Even though e−t dt isn’t an elementary function, we can still compute it. Elementary functions 
0 

are still a little bit better, though. For example: 

sin x = x − 
x

3! 

3 

+ 
x

5! 

5 

− · · · = ⇒ sin 
π 
2

= 
π 
2 
− 

(π/

3!
2)3 

+
(π/

5!
2)5 

− · · · 

But to compute sin(π/2) numerically is a waste of time. We know that the sum if something very 
simple, namely, 

π
sin = 1 

2 
It’s not obvious from the series expansion that sin x deals with angles. Series are sometimes com­
plicated and unintuitive. 

π π
Nevertheless, we can read this formula backwards to find a formula for . Start with sin = 1.

2 2 
Then, � 1 dx ��1 π π 

0 
√

1 − x2 
= sin−1 x� = sin−1 1 − sin−1 0 = 

2 
− 0 = 

0 2 

We want to find the series expansion for (1 − x2)−1/2, but let’s tackle a simpler case first: � � � � � � � � � �
1 1 1 1 1 

1 
− 

2 
− 

2 
− 1 − 

2 
− 

2 
− 1 − 

2 
− 2 

(1 + u)−1/2 = 1 + − 
2 

u + 
1 2 

u 2 + 
1 2 3 

u 3 + · · · 
· · · 

1 1 3 1 3 5

= 1 − 

2 
u +

2 
· 
4 
u 2 − 

2 
· 
4 
· 
6 
u 3 + · · ·


· · · 
Notice the pattern: odd numbers go on the top, even numbers go on the bottom, and the signs 
alternate. 
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Now, let u = −x2 . 

1 1 3 1 3 5
(1 − x 2)−1/2 = 1 + 

2
x 2 +

2 
· 
4 
x 4 +

2 
· 
4 
· 
6 
x 6 + · · · 

· · · 

1 x3 1 3 x5 1 3 5 x7 

(1 − x 2)−1/2dx = C + x +
2 3 

+
2 
· 
4 5 

+
2 
· 
4 
· 
6 7 

+ · · · 
· · · � 1 � � � � � � � � � � 

π 1 1 1 3 1 1 3 5 1 
2

= 
0 

(1 − x 2)−1/2dx = 1 + 
2 3

+
2 
· 
4 5

+
2 
· 
4 
· 
6 7

+ · · · 
· · · 

Here’s a hard (optional) extra credit problem: why does this series converge? Hint: use 
L’Hôpital’s rule to find out how quickly the terms decrease. 

The Final Exam 

Here’s another attempt to clarify the concept of weighted averages. 

Weighted Average 

A weighted average of some function, f , is defined as: � b 
w(x)f(x) dx 

aAverage(f) = � b 
w(x) dx 

a � b 

Here, w(x) dx is the total, and w(x) is the weighting function. 
a 

Example: taken from a past problem set. 
You get $t if a certain particle decays in t seconds. How much should you pay to play? You were 
given that the likelihood that the particle has not decayed (the weighting function) is: 

w(x) = e−kt 

Remember, � ∞ 1 
e−kt dt = 

k0 

The payoff is 
f(t) = t 

The expected (or average) payoff is 

∞ 
f(t)w(t) dt 

∞ 
te−kt dt

0� = �0 
∞ 

w(t) dt 
∞ 

e−kt dt
0 0 

= k 
∞ 

te−kt dt = 
∞

(kt)e−kt dt 
0 0 

Do the change of variable: 
u = kt and du = k dt 
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∞ du
Average = ue−u 

k0 

∞
On a previous problem set, you evaluated this using integration by parts: ue−u du = 1. 

0 

Average = 
� ∞ 

0 
ue−u du 

k 
= 

1 
k 

On the problem set, we calculated the half-life (H) for Polonium120 was (131)(24)(60)2 seconds. We 
also found that 

ln 2 
k = 

H 
Therefore, the expected payoff is 

1 H 
= 

k ln 2 
where H is the half-life of the particle in seconds. 

Now, you’re all probably wondering: who on earth bets on particle decays? 

In truth, no one does. There is, however, a very similar problem that is useful in the real world. 
There is something called an annuity, which is basically a retirement pension. You can buy an 
annuity, and then get paid a certain amount every month once you retire. Once you die, the annuity 
payments stop. 

You (and the people paying you) naturally care about how much money you can expect to get 
over the course of your retirement. In this case, f(t) = t represents how much money you end up 
with, and w(t) = e−kt represents how likely your are to be alive after t years. 

What if you want a 2-life annuity? Then, you need multiple integrals, which you will learn about 
in multivariable calculus (18.02). 

Our first goal in this class was to be able to differentiate anything. In multivariable calculus, you 
will learn about another chain rule. That chain rule will unify the (single-variable) chain rule, the 
product rule, the quotient rule, and implicit differentiation. 

You might say the multivariable chain rule is 

One thing to rule them all 
One thing to find them 
One thing to bring them all 
And in a matrix bind them. 

(with apologies to JRR Tolkien). 
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