## Integrating $\frac{1}{(5 x+2)^{2}}$ from 1 to infinity

Compute: $\int_{1}^{\infty} \frac{d x}{(5 x+2)^{2}}$

## Solution

This is an improper integral; our first step is to convert it to a proper one:

$$
\int_{1}^{\infty} \frac{d x}{(5 x+2)^{2}}=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{d x}{(5 x+2)^{2}}
$$

We can now apply a substitution to evaluate the integral. If we let $u=5 x+2$ then $d u=5 d x$ and $d x=\frac{1}{5} d u$. When $x=1, u=7$ and when $x=N, u=5 N+2$. Therefore:

$$
\begin{aligned}
\int_{1}^{N} \frac{d x}{(5 x+2)^{2}} & =\int_{7}^{2 N+5} \frac{\frac{1}{5} d u}{u^{2}} \\
& =\frac{1}{5} \int_{7}^{5 N+2} u^{-2} d u \\
& =\left.\frac{1}{5}\left(-u^{-1}\right)\right|_{7} ^{5 N+2} \\
& =\frac{1}{5}\left(-\frac{1}{5 N+2}-\left(-\frac{1}{7}\right)\right) \\
& =\frac{1}{35}-\frac{1}{5(5 N+2)}
\end{aligned}
$$

By evaluating the limit, we find the value of the improper integral:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{(5 x+2)^{2}} & =\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{d x}{(5 x+2)^{2}} \\
& =\lim _{N \rightarrow \infty}\left(\frac{1}{35}-\frac{1}{5(5 N+2)}\right) \\
& =\frac{1}{35}-0 \\
& =\frac{1}{35} \approx .03
\end{aligned}
$$

Geometrically, this tells us that if we horizontally compress the graph of $\frac{1}{x^{2}}$ (by multiplying $x$ by 5) and then shift the result to the left 2 units, the final graph is very close to the $x$-axis for $x>1$.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

