Exploring a Parametric Curve

a) Describe the curve traced out by the parametrization:

$$
\begin{aligned}
& x=t \cos t \\
& y=t \sin t
\end{aligned}
$$

where $0 \leq t \leq 4 \pi$.
b) Set up and simplify, but do not integrate, an expression for the arc length $\int_{0}^{4 \pi} \frac{d s}{d t} d t$ of this curve.

Solution

a) Describe the curve traced out by the parametrization

$$
\begin{aligned}
& x=t \cos t \\
& y=t \sin t
\end{aligned}
$$

where $0 \leq t \leq 4 \pi$.
We know that the equations:

$$
\begin{aligned}
& x=a \cos t \\
& y=a \sin t
\end{aligned}
$$

describe a circle of radius a, where a is a constant.
In the problem we've been given, the multiple a is variable:

$$
\begin{aligned}
x & =a(t) \cos t \\
y & =a(t) \sin t
\end{aligned}
$$

where $a(t)=t$. The curve still moves counter-clockwise around the origin as t increases; however, its distance from the origin also increases as t increases.

We could compute the coordinates of several points on the curve to get a better idea of its behavior. The table below gives a few of these coordinates.

t	(x, y)
0	$(0,0)$
$\frac{\pi}{4}$	$\left(\frac{\pi \sqrt{2}}{8}, \frac{\pi \sqrt{2}}{8}\right)$
$\frac{\pi}{2}$	$\left(0, \frac{\pi}{2}\right)$
π	$(-\pi, 0)$
$\frac{3 \pi}{2}$	$\left(0,-\frac{3 \pi}{2}\right)$

We see that the curve starts at $(0,0)$ and proceeds counter-clockwise, moving away from the origin. It wraps twice around the origin as t increases from 0 to 4π, tracing out a figure known as an Archimedean spiral.

b) Set up and simplify, but do not integrate, an expression for the arc length $\int_{0}^{4 \pi} \frac{d s}{d t} d t$ of this curve.

We know that $d s=\sqrt{d x^{2}+d y^{2}}$, so:

$$
\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

We compute that:

$$
\begin{aligned}
\frac{d x}{d t} & =-t \sin t+\cos t \\
\frac{d y}{d t} & =t \cos t+\sin t \\
\left(\frac{d x}{d t}\right)^{2} & =t^{2} \sin ^{2} t-2 t \sin t \cos t+\cos ^{2} t \\
\left(\frac{d y}{d t}\right)^{2} & =t^{2} \cos ^{2} t+2 t \sin t \cos t+\sin ^{2} t \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =t^{2}\left(\sin ^{2} t+\cos ^{2} t\right)-2 t \sin t \cos t+2 t \sin t \cos t+\left(\cos ^{2} t+\sin ^{2} t\right) \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =t^{2}+1
\end{aligned}
$$

Thus we have:

$$
\text { Arc length }=\int_{0}^{4 \pi} \frac{d s}{d t} d t
$$

$$
=\int_{0}^{4 \pi} \sqrt{t^{2}+1} d t
$$

If we wished we could complete this calculation using the inverse substitution $t=\tan \theta$ and then integrating $\sec ^{3} \theta$. We could then check our work by comparing our final result to the circumference of an appropriate circle.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

