Surface Area of an Ellipsoid

Next we'll find the surface area of the surface formed by revolving our elliptical curve:

$$
\begin{aligned}
& x=2 \sin t \\
& y=\cos t
\end{aligned}
$$

about the y-axis.
Remember that our surface area element $d A$ is the area of a thin circular ribbon with width $d s$. The radius of this circle is $x=2 \sin t$, which is the distance between the ribbon and the y-axis.

$$
d A=2 \pi \underbrace{(2 \sin t)}_{x} \underbrace{\sqrt{4 \cos ^{2} t+\sin ^{2} t} d t}_{d s=\operatorname{arc} \text { length }} .
$$

To find the surface area we need to integrate $d A$ between certain limits; what are they?

Figure 1: Elliptical path described by $x=2 \sin t, y=\cos t$.
By looking at Figure 1 we can see that we need to integrate from 0 to π. Remember that we only need to go from the top to the bottom of the ellipse to trace the right hand side; including the left hand side of the ellipse would double our result and give the wrong answer.

$$
A=\int_{0}^{\pi} 2 \pi(2 \sin t) \sqrt{4 \cos ^{2} t+\sin ^{2} t} d t
$$

Notice that we're integrating from the top of the ellipse to the bottom; if we think in terms of the y-variable we tend to think of going the opposite way.

This integral turns out to be do-able but long. Start by using the substitution $u=\cos t, d u=-\sin t d t$.

$$
\begin{aligned}
A & =\int_{0}^{\pi} 2 \pi(2 \sin t) \sqrt{4 \cos ^{2} t+\sin ^{2} t} d t \\
& =\int_{u=1}^{u=-1}-4 \pi \sqrt{3 u^{2}+1} d u
\end{aligned}
$$

Next would be another trigonometric substitution to deal with the square root, and so on.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

