1. Compute the area between the curves $x=y^{2}-4 y$ and $x=2 y-y^{2}$.

Let $f(y)=y^{2}-4 y=y(y-4) . f(y)=0$ when $y=0$ or $y=4$.
Let $g(y)=2 y-y^{2}=y(2-y) . g(y)=0$ when $y=0$ or $y=2$.


The graphs of $f$ and $g$ intersect at $(0,0)$ and one other point. Find that point:

$$
\begin{aligned}
f(y) & =g(y) \\
y^{2}-4 y & =2 y-y^{2} \\
2 y^{2}-6 y & =0 \\
2 y(y-3) & =0
\end{aligned}
$$

The graphs intersect at $y=0$ and at $y=3$. When $y=3, f(y)=-3$ so the second point of intersection is $(3,-3)$. (Check this by finding $g(3)$.)
Over the interval between intersections of the graphs, $g(y)>f(y)$. The distance between graphs is:

$$
g(y)-f(y)=\left(2 y-y^{2}\right)-\left(y^{2}-4 y\right)=6 y-2 y^{2} .
$$

The area between graphs is:

$$
\int_{0}^{3} 6 y-2 y^{2} d y=\left[3 y^{2}-\frac{2}{3} y^{3}\right]_{0}^{3}
$$

$$
\begin{aligned}
& =\left(3 \cdot 3^{2}-\frac{2}{3} \cdot 3^{3}\right)-0 \\
& =27-18 \\
& =9
\end{aligned}
$$

2. Find the volume of the solid obtained by revolving the region bounded by the curves $y=e^{x}, y=2$, and $x=0$ about the line $y=-1$. You only need to give a definite integral expressing the volume. Do not solve the integral.


Washer method: $\int_{0}^{\ln 2} \pi\left(3^{2}-\left(1+e^{x}\right)^{2}\right) d x$


Shell method: $\int_{1}^{2} 2 \pi(y+1) \ln y d y$
3. Evaluate each of the following expressions
(a)

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+i \cdot \frac{3}{n}\right)^{2} \frac{3}{n}
$$

Strategy: interpret this as a Riemann sum and find its value by integrating.
Consider the interval $[0,3]$ cut into $n$ parts.
Consider the function $f(x)=(1+x)^{2}$.
The right Riemann Sum is:

$$
\sum_{i=1}^{n}\left(1+i \frac{3}{n}\right)^{2} \frac{3}{n}
$$

$$
\text { So } \begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+i \frac{3}{n}\right)^{2} \frac{3}{n} & =\int_{0}^{3}(1+x)^{2} d x \\
& =\int_{0}^{3} 1+2 x+x^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left[x+x^{2}+\frac{1}{3} x^{3}\right]_{0}^{3} \\
& =(3+9+9)-0 \\
& =21
\end{aligned}
$$

(b) The value $f(4)$ for the continuous function $f$ satisfying

$$
x \sin \pi x=\int_{0}^{x^{2}} f(t) d t
$$

Strategy: apply the fundamental theorem of calculus.

$$
\begin{aligned}
\frac{d}{d x}(x \sin \pi x) & =\frac{d}{d x} \int_{0}^{x^{2}} f(t) d t \\
\Rightarrow \sin \pi x+\pi x \cos \pi x & =f\left(x^{2}\right) \cdot 2 x \\
\Rightarrow f\left(x^{2}\right) & =\frac{1}{2 x} \sin \pi x+\frac{1}{2 x} \pi x \cos \pi x \\
\Rightarrow f(4)=f\left(2^{2}\right) & =\frac{1}{2 \cdot 2} \sin 2 \pi+\frac{\pi}{2} \cos 2 \pi \\
& =\frac{\pi}{2}
\end{aligned}
$$

4. (a) Find the centroid (i.e. center of mass) of a right triangle with height $h$ and base $r$ (assuming the triangle has uniform density). For a plane figure with uniform density, the coordinates of the center of mass are given by weighted averages, where the weighting function is the moment of inertia:

$$
\left(\frac{\int x f(x) d x}{\int f(x) d x}, \frac{\int y g(y) d y}{\int g(y) d y}\right) .
$$



Note that the hypotenuse of the triangle lies on a line with equation $y=$ $h-\frac{h}{r} x$.
You may know from the homework that the center of mass lies at the centroid (h/3, r/3).
If not, you will need to calculate the $x$ and $y$ coordinates of the center of mass separately. The formula for the $x$ coordinate of the center of mass looks something like:

$$
\frac{\int x f(x) d x}{\int f(x) d x}
$$

In this case, the numerator of this expression is:

$$
\begin{aligned}
\int_{0}^{r} x\left(h-\frac{h}{r} x\right) d x & =\int_{0}^{r} h x-\frac{h}{r} x^{2} d x \\
& =\left[\frac{h}{2} x^{2}-\frac{h}{3 r} x^{3}\right]_{0}^{r} \\
& =\left(\frac{h}{2} r^{2}-\frac{h}{3 r} r^{3}\right)-0 \\
& =\frac{h}{6} r^{2}
\end{aligned}
$$

The denominator is just the area of the triangle: $\frac{1}{2} r h$. So the $x$ coordinate of the center of mass is:

$$
\frac{h r^{2} / 6}{h r / 2}=\frac{r}{3}
$$

For the $y$ coordinate, we note that the hypotenuse lies on the line with equation $x=r-\frac{r}{h} y$ and so the numerator will be:

$$
\begin{aligned}
\int_{0}^{h} y\left(r-\frac{r}{h} y\right) d y & =\int_{0}^{h} r y-\frac{r}{h} y^{2} d y \\
& =\left[\frac{r}{2} y^{2}-\frac{r}{3 h} y^{3}\right]_{0}^{h} \\
& =\left(\frac{r}{2} h^{2}-\frac{r}{3 h} h^{3}\right)-0 \\
& =\frac{r}{6} h^{2}
\end{aligned}
$$

Dividing by the area of the triangle, we find that the $y$ coordinate of the center of mass is:

$$
\frac{r h^{2} / 6}{h r / 2}=\frac{h}{3}
$$

The centroid of the right triangle with height $h$ and base $r$ shown in the figure above lies at $\left(\frac{r}{3}, \frac{h}{3}\right)$.
(b) Pappus' Theorem says that the volume of the solid formed by rotating a region is the area of the region times the distance traveled by the rotating centroid. Use Pappus' Theorem and your answer in the previous part to find the volume of a cone with height $h$ and base radius $r$.

We can form a cone with height $h$ and base radius $r$ by rotating the triangle above about the $y$ axis. The area of the rotated region is $\frac{1}{2} r h$. The centroid lies distance $r / 3$ from the $y$ axis, so it travels a distance of $2 \pi r / 3$ as it is rotated.
Hence, by Pappus' Theorem, the volume of the cone is:

$$
\frac{1}{2} r h \cdot 2 \pi \frac{r}{3}=\frac{\pi r^{2} h}{3}
$$

5. Given a definite integral

$$
\int_{a}^{b} f(x) d x
$$

let $T_{n}$ be the trapezoid approximation with $n$ intervals, $M_{n}$ the midpoint approximation using $n$ intervals, and $S_{2 n}$ the Simpson's rule approximation using $2 n$ intervals. Prove that

$$
\frac{1}{3} T_{n}+\frac{2}{3} M_{n}=S_{2 n}
$$

We divide the interval $[a, b]$ into $2 n$ intervals.

Let $x_{0}=a, x_{2 n}=b, x_{i}=a+\frac{(b-a) i}{2 n}$.
Then:

$$
\begin{aligned}
T_{n} & =\frac{b-a}{2 n}\left(f\left(x_{0}\right)+f\left(x_{2 n}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)\right) \\
M_{n} & =\frac{b-a}{n}\left(\sum_{i=1}^{n} f\left(x_{2 i-1}\right)\right) \\
S_{2 n} & =\frac{b-a}{6 n}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+4 f\left(x_{2 n-1}\right)+x_{2 n}\right) \\
& =\frac{b-a}{6 n}\left(f\left(x_{0}\right)+f\left(x_{2 n}\right)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)\right)
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\frac{1}{3} T_{n}+\frac{2}{3} M_{n} & =\frac{1}{3} T_{n}+\frac{4}{6} M_{n} \\
& =\frac{b-a}{6 n}\left(f\left(x_{0}\right)+f\left(x_{2 n}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)\right) \\
& =S_{2 n}
\end{aligned}
$$

6. A tank contains 1000 L of brine (that is, salt water) with 15 kg of dissolved salt. Pure water enters the top of the tank at a constant rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is thoroughly mixed and drains from the bottom of the tank at the same rate so that the volume of liquid in the tank is constant.
(a) Find a differential equation expressing the rate at which salt leaves the tank. Let $s(t)=$ amount of salt in kg . at time $t$. Then

$$
\frac{d s}{d t}=-10 \mathrm{~L} / \min \cdot \frac{s(t)}{1000} \frac{\mathrm{~kg}}{\mathrm{~L}}=-\frac{s(t)}{100} \mathrm{~kg} / \min
$$

(b) Solve this differential equation to find an expression for the amount of salt (in kg ) in the mixture at time $t$.
Use separation of variables:

$$
\frac{d s}{s(t)}=-\frac{1}{100} d t
$$

Then integrate:

$$
\ln (s(t))=-\frac{1}{100} t+c
$$

To get rid of the logarithm, exponentiate both sides, letting $k=e^{c}$ :

$$
\begin{aligned}
\ln (s(t)) & =-\frac{1}{100} t+c \\
e^{\ln (s(t))} & =e^{-\frac{1}{100} t+c} \\
s(t) & =e^{-\frac{1}{100} t} e^{c} \\
s(t) & =k e^{-\frac{1}{100} t}
\end{aligned}
$$

We know $s(0)=15$, so $k=15$. Hence:

$$
s(t)=15 e^{-\frac{1}{100} t} .
$$

(c) How long does it take for the total amount of salt in the brine to be reduced by half its original amount? (Recall $\ln 2 \approx .693$.)
We need:

$$
\begin{aligned}
e^{-\frac{1}{100} t} & =\frac{1}{2} \\
\ln \left(e^{-\frac{1}{100} t}\right) & =\ln \left(\frac{1}{2}\right) \\
-\frac{1}{100} t & =-\ln 2 \\
t & =100 \cdot \ln 2 \approx 69.3 \text { minutes. }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

