Integral of $|x|$

Use the geometric definition of the definite integral to compute:

$$
\int_{-1}^{2}|x| d x
$$

Solution

Figure 1: Area under $|x|$.

Geometrically, the value of this integral is the area between the x-axis and the graph of $y=|x|$. As illustrated in Figure 1, this is the sum of the areas of a triangle with base 1 and height 1 and a triangle with base 2 and height 2 . Therefore:

$$
\int_{-1}^{2}|x| d x=\frac{1}{2} \cdot 1 \cdot 1+\frac{1}{2} \cdot 2 \cdot 2=\frac{5}{2}
$$

You might also reach this conclusion by counting the number of unit squares that fit in the shaded area.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

