Example 1. $f(x)=\frac{1}{x}$
We'll find the derivative of the function $f(x)=\frac{1}{x}$. To do this we will use the formula:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} .
$$

Graphically, we will be finding the slope of the tangent line at at an arbitrary point $\left(x_{0}, \frac{1}{x_{0}}\right)$ on the graph of $y=\frac{1}{x}$. (The graph of $y=\frac{1}{x}$ is a hyperbola in the same way that the graph of $y=x^{2}$ is a parabola.)

Figure 1: Graph of $\frac{1}{x}$
We start by computing the slope of the secant line:

$$
\begin{aligned}
\frac{\Delta f}{\Delta x} & =\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \\
& =\frac{\frac{1}{x_{0}+\Delta x}-\frac{1}{x_{0}}}{\Delta x} \\
& =\frac{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)} \frac{1}{x_{0}+\Delta x}-\frac{1}{x_{0}} \\
& =\frac{\frac{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}{x_{0}+\Delta x}-\frac{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}{x_{0}}}{\left(x_{0}\right)\left(x_{0}+\Delta x\right) \Delta x} \\
& =\frac{1}{\Delta x} \frac{x_{0}-\left(x_{0}+\Delta x\right)}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\Delta x} \frac{-\Delta x}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)} \\
& =\frac{-1}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}
\end{aligned}
$$

Next, we see what happens to the slopes of the secant lines as Δx tends to zero:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{-1}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}=\frac{-1}{x_{0}^{2}}
$$

One thing to keep in mind when working with derivatives: it may be tempting to plug in $\Delta x=0$ right away. If you do this, however, you will always end up with $\frac{\Delta f}{\Delta x}=\frac{0}{0}$. You will always need to do some cancellation to get at the answer.

We've computed that $f^{\prime}(x)=\frac{-1}{x_{0}^{2}}$. Is this correct? How might we check our work? First of all, $f^{\prime}\left(x_{0}\right)$ is negative - as is the slope of the tangent line on the graph of $y=\frac{1}{x}$. Secondly, as $x_{0} \rightarrow \infty$ (i.e. as x_{0} grows larger and larger), the tangent line is less and less steep. So $\frac{1}{x_{0}^{2}}$ should get closer to 0 as x_{0} increases, which it does.

Question: Explain why $\lim _{\Delta x \rightarrow 0} \frac{-1}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}=\frac{-1}{x_{0}^{2}}$ again?
Answer: The point x_{0} could be any point; let's suppose that $x_{0}=3$ so that we can look at this limit in a specific case.

We want to know the value of $\frac{-1}{(3)(3+\Delta x)}$ as Δx tends toward zero. As Δx gets smaller and smaller $3+\Delta x$ gets closer and closer to 3 , and so $\frac{-1}{(3)(3+\Delta x)}$ gets closer and closer to $\frac{-1}{(3)(3)}=\frac{-1}{9}$.

Question: Why is it that $\frac{\frac{1}{x_{0}+\Delta x}-\frac{1}{x_{0}}}{\Delta x}=\frac{1}{\Delta x} \frac{x_{0}-\left(x_{0}+\Delta x\right)}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}$?
Answer: There are two steps in this simplification. We factored out the Δx that was in the denominator to become the $\frac{1}{\Delta x}$ "out front". At the same time, we rewrote the difference of two fractions $\frac{\Delta x}{x_{0}+\Delta x}-\frac{1}{x_{0}}$ using a common denominator.

This common denominator was $\left(x_{0}\right)\left(x_{0}+\Delta x\right)$, which is just the product of the denominators in $\frac{1}{x_{0}+\Delta x}-\frac{1}{x_{0}}$. To get the common denominator, we multiply the first fraction by $\frac{\left(x_{0}\right)}{\left(x_{0}\right)}=1$ and the second by $\frac{\left(x_{0}+\Delta x\right)}{\left(x_{0}+\Delta x\right)}$. (Multiplying by 1 won't change its value, but can change the algebraic expression we use to describe that value.) The denominators cancel, as intended, and we're left with $\frac{x_{0}-\left(x_{0}+\Delta x\right)}{\left(x_{0}\right)\left(x_{0}+\Delta x\right)}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

