$\lim_{x \to \infty} (x^{1/x})$

Use an extension of l'Hôpital's rule to compute $\lim_{x\to\infty} (x^{1/x})$.

Solution

This calculation is very similar to the calculation of $\lim_{x\to 0^+} x^x$ presented in lecture, except that instead of the indeterminate form 0^0 we instead have ∞^0 .

As before, we use the exponential and natural log functions to rephrase the problem:

$$x^{1/x} = e^{\ln x^{1/x}} = e^{\frac{\ln x}{x}}.$$

Thus, $\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\frac{\ln x}{x}}$. Since the function e^t is continuous,

$$\lim_{x \to \infty} e^{\frac{\ln x}{x}} = e^{\lim_{x \to \infty} \frac{\ln x}{x}}$$

We can now focus our attention on the limit in the exponent; $\lim_{x\to\infty} \frac{\ln x}{x}$ is in the indeterminate form $\frac{\infty}{\infty}$, so l'Hôpital's rule is applicable.

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1}$$
 (provided the limit exists)
$$= \frac{0}{1}$$
$$= 0$$

We conclude that $\lim_{x \to \infty} x^{1/x} = e^{\lim_{x \to \infty} \frac{\ln x}{x}} = 1.$

This implies that the n^{th} root of n approaches 1 as n approaches infinity.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.