$\lim _{x \rightarrow \infty}\left(x^{1 / x}\right)$
Use an extension of l'Hôpital's rule to compute $\lim _{x \rightarrow \infty}\left(x^{1 / x}\right)$.

Solution

This calculation is very similar to the calculation of $\lim _{x \rightarrow 0^{+}} x^{x}$ presented in lecture, except that instead of the indeterminate form 0^{0} we instead have ∞^{0}.

As before, we use the exponential and natural log functions to rephrase the problem:

$$
x^{1 / x}=e^{\ln x^{1 / x}}=e^{\frac{\ln x}{x}} .
$$

Thus, $\lim _{x \rightarrow \infty} x^{1 / x}=\lim _{x \rightarrow \infty} e^{\frac{\ln x}{x}}$. Since the function e^{t} is continuous,

$$
\lim _{x \rightarrow \infty} e^{\frac{\ln x}{x}}=e^{\lim _{x \rightarrow \infty} \frac{\ln x}{x}} .
$$

We can now focus our attention on the limit in the exponent; $\lim _{x \rightarrow \infty} \frac{\ln x}{x}$ is in the indeterminate form $\frac{\infty}{\infty}$, so l'Hôpital's rule is applicable.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} & =\lim _{x \rightarrow \infty} \frac{1 / x}{1} \quad \text { (provided the limit exists) } \\
& =\frac{0}{1} \\
& =0
\end{aligned}
$$

We conclude that $\lim _{x \rightarrow \infty} x^{1 / x}=e^{\lim _{x \rightarrow \infty} \frac{\ln x}{x}}=1$.
This implies that the $n^{\text {th }}$ root of n approaches 1 as n approaches infinity.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

