More Examples of Integration

Example: $\int x e^{-x^{2}} d x$
For this we guess $e^{-x^{2}}$, hoping that the chain rule will somehow provide the missing factor of x in the integral. As usual, we take the derivative to check:

$$
\frac{d}{d x} e^{-x^{2}}=\left(e^{-x^{2}}\right)(-2 x)=-2 x e^{-x^{2}}
$$

We're off by a factor of -2 , so we divide our original guess by this constant to reach the conclusion that:

$$
\int x e^{-x^{2}} d x=-\frac{1}{2} e^{-x^{2}}+c
$$

Caution: If you solve integrals by guessing and don't check your answer by taking a derivative you're likely to make mistakes.

Example: $\int \sin x \cos x d x$
What's a good guess?
Student: $\sin ^{2} x$
Let's check it!

$$
\frac{d}{d x} \sin ^{2} x=2 \sin x \cos x .
$$

So:

$$
\int \sin x \cos x d x=\frac{1}{2} \sin ^{2} x+c
$$

An equally acceptable answer is:

$$
\int \sin x \cos x d x=-\frac{1}{2} \cos ^{2} x+c
$$

This seems like a contradiction; let's check our answer:

$$
\frac{d}{d x} \cos ^{2} x=(2 \cos x)(-\sin x)=-2 \sin x \cos x
$$

Both answers are correct! But we just proved that integrals are unique up to a constant. What's going on?

It turns out that the difference between the two answers is a constant:

$$
\frac{1}{2} \sin ^{2} x-\left(-\frac{1}{2} \cos ^{2} x\right)=\frac{1}{2}\left(\sin ^{2} x+\cos ^{2} x\right)=\frac{1}{2}
$$

So,

$$
\frac{1}{2} \sin ^{2} x-\frac{1}{2}=\frac{1}{2}\left(\sin ^{2} x-1\right)=\frac{1}{2}\left(-\cos ^{2} x\right)=-\frac{1}{2} \cos ^{2} x
$$

The two answers are, in fact, equivalent. The constant c is shifted by $\frac{1}{2}$ from one answer to the other.

Example: $\int \frac{d x}{x \ln x}$
We will assume $x>0$ so that $\ln x$ is defined. We don't quickly come up with a good guess, so we use the method of substitution (which is the only other method we know). The ugliest part of the integral is the natural log, so we choose:

$$
u=\ln x .
$$

One advantage of this choice is that taking the differential of $\ln x$ makes it simpler: $d u=\frac{1}{x} d x$. Substitute these into the integral to get:

$$
\begin{aligned}
\int \frac{d x}{x \ln x} & =\int \underbrace{\frac{1}{\ln x}}_{\frac{1}{u}} \underbrace{\frac{d x}{x}}_{d u} \\
& =\int \frac{1}{u} d u \\
& =\ln |u|+c \\
& =\ln |\ln (x)|+c
\end{aligned}
$$

For this example, the method of substitution is better than guessing.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

