Limits at Infinity of $\frac{e^{x}}{x}$ and $\frac{x}{e^{x}}$

As x approaches infinity, the rational expressions $\frac{e^{x}}{x}$ and $\frac{x}{e^{x}}$ take on the form $\frac{\infty}{\infty}$. Use the extended version of l'Hopital's rule to evaluate the following limits, if they exist.
a) $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}$
b) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$

Solution

The extended version of l'Hopital's rule tells us that:

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that $\lim _{x \rightarrow+\infty} f(x)$ and $\lim _{x \rightarrow+\infty} g(x)$ have the appropriate properties and $\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists. Since we have verified that the limits in question are of the form $\frac{\infty}{\infty}$, we may apply this rule.
a) $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}$

Because this is of the form $\frac{\infty}{\infty}$, we know that if the limit exists then:

$$
\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=\lim _{x \rightarrow+\infty} \frac{e^{x}}{1}=\infty
$$

As x approaches infinity, $\frac{e^{x}}{1}$ does as well; hence so does $\frac{e^{x}}{x}$.
b) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$

If the limit exists then:

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{1}{e^{x}}=0 .
$$

As x approaches infinity, the denominator of this rational function grows faster than the numerator and so the limit of the quotient is 0 .
We will soon see how limits such as these can be used to compare the rates of growth of two functions.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

