Substitution of Power Series

We can find the power series of $e^{-t^{2}}$ by starting with the power series for e^{x} and making the substitution $x=-t^{2}$.

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad(R=\infty) \\
e^{-t^{2}} & =1+\left(-t^{2}\right)+\frac{\left(-t^{2}\right)^{2}}{2!}+\frac{\left(-t^{2}\right)^{3}}{3!}+\cdots \\
& =1-t^{2}+\frac{t^{4}}{2!}-\frac{t^{6}}{3!}+\cdots
\end{aligned}
$$

The signs of the terms alternate, the powers are all even, and the denominators are the factorials shown. The radius of convergence is infinity.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

