Lemniscate

The curve described in polar coordinates by $r^{2}=\cos (2 \theta)$ is called a lemniscate.
a) For what values of θ does there exist such a point (r, θ) ?
b) For what values of θ is r at its minimum length?
c) For what values of θ is r at its maximum length?
d) Use the information you have gathered to sketch a rough graph of this curve.

Solution

It is helpful to have a graph of $\cos (2 \theta)$ to look at while working this problem.
a) For what values of θ does there exist such a point (r, θ) ?

We can't take the square root of a negative number (in this class), so r is undefined anywhere $\cos (2 \theta)$ is negative. The function $f(\theta)=\cos (\theta)$ has negative outputs on the interval $\pi / 2<\theta<3 \pi / 2$ and in general on all intervals of width π centered on an odd multiple of π. The graph of the function $g(\theta)=\cos (2 \theta)$ is a horizontally compressed copy of the graph of $f(\theta)$, so $\cos (2 \theta)$ is zero on the intervals of width $\pi / 2$ centered on odd multiples of $\pi / 2$; on the intervals $\pi / 4<\theta<3 \pi / 4$ and $5 \pi / 4<\theta<7 \pi / 4$, etc.

For all other values of θ, the points $(\sqrt{\cos (2 \theta)}, \theta)$ and $(-\sqrt{\cos (2 \theta)}, \theta)$ are points on the lemniscate.
b) For what values of θ is r at its minimum length?

When $\cos (2 \theta)=0, r(\theta)=0$. This is the smallest value r can attain (because r is defined in terms of a square root function). Considering the graph $\cos (2 \theta)$, we observe that $\cos (2 \theta)=0$ when 2θ is an odd multiple of $\pi / 2$; i.e. when θ is an odd multiple of $\pi / 4$.
The radius r has length 0 when $\theta=\ldots,-3 \pi / 4,-\pi / 4, \pi / 4,3 \pi / 4, \ldots$
c) For what values of θ is r at its maximum length?

When $\cos (2 \theta)=1, r= \pm 1$. The value of $\cos (2 \theta)$ is never greater than 1 , so $r= \pm \sqrt{\cos (2 \theta)}$ is never longer than 1 unit.

Going back to our graph of $\cos (2 \theta)$, we see that the radius r is greatest when θ is a multiple of $\pi: ~ \theta=\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots$
d) Use the information you have gathered to sketch a rough graph of this curve.

We know that the curve (r, θ) sweeps out a path for the intervals $k \pi-\pi / 4<$ $\theta<k \pi+\pi / 4$ and does not exist outside of those intervals. On each of these intervals, r starts at its minimum value of 0 , increases to its maximum 1 , then decreases again. We could try to find coordinates for the points (r, θ) when $\theta=k \pi \pm \pi / 8$, or we could make a guess at the path the curve follows between extremes. Our end result should look a little bit like the figure below.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

