Newton's Method

Newton's method is a powerful tool for solving equations of the form $f(x)=0$. Example: Solve $x^{2}=5$.
We're going to use Newton's method to find a numerical approximation for $\sqrt{5}$. Any equation that you understand can be solved this way. In order to use Newton's method, we define $f(x)=x^{2}-5$. By finding the value of x for which $f(x)=0$ we solve the equation $x^{2}=5$.

Our goal is to discover where the graph crosses the x-axis. We start with an initial guess - we'll guess $x_{0}=2$, since $\sqrt{5} \approx \sqrt{4}=2$. This is not a very good guess; $f(2)=-1$, and we're looking for a number x for which $f(x)=0$. We'll try to improve our guess.

We pretend that the function is linear, and look for the point where the tangent line to the function at x_{0} crosses the x -axis: see Fig. 1. This point $\left(x_{1}, 0\right)$ gives us a new guess at our solution: x_{1}.

Figure 1: Illustration of Newton's Method
The equation for the tangent line is:

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

When the tangent line intercepts the x-axis $y=0$, and the x coordinate of that point is our new guess x_{1}.

$$
\begin{aligned}
-y_{0} & =m\left(x_{1}-x_{0}\right) \\
-\frac{y_{0}}{m} & =x_{1}-x_{0} \\
x_{1} & =x_{0}-\frac{y_{0}}{m}
\end{aligned}
$$

In terms of f :

$$
\begin{aligned}
y_{0} & =f\left(x_{0}\right) \\
m & =f^{\prime}\left(x_{0}\right)
\end{aligned}
$$

because m is the slope of the tangent line to $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$. Therefore,

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

The point of Newton's method is that we can improve our new guess by repeating this process. To get our $(n+1)^{s t}$ guess we apply this formula to our $n^{t h}$ guess:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

In our example, $x_{0}=2$ and $f(x)=x^{2}-5$. We first calculate $f^{\prime}(x)=2 x$. Thus,

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{\left(x_{0}^{2}-5\right)}{2 x_{0}}=x_{0}-\frac{1}{2} x_{0}+\frac{5}{2 x_{0}} \\
x_{1} & =\frac{1}{2} x_{0}+\frac{5}{2 x_{0}}
\end{aligned}
$$

The main idea is to repeat (iterate) this process:

$$
\begin{aligned}
x_{2} & =\frac{1}{2} x_{1}+\frac{5}{2 x_{1}} \\
x_{3} & =\frac{1}{2} x_{2}+\frac{5}{2 x_{2}}
\end{aligned}
$$

and so on. The procedure approximates $\sqrt{5}$ extremely well.

Let's see how well this works:

$$
\begin{aligned}
x_{1} & =\frac{1}{2} 2+\frac{5}{2 \cdot 2} \\
& =1+\frac{5}{4} \\
& =\frac{9}{4} \\
x_{2} & =\frac{1}{2} \frac{9}{4}+\frac{5}{2 \frac{9}{4}} \\
& =\frac{9}{8}+\frac{5}{2} \frac{4}{9} \\
& =\frac{9}{8}+\frac{10}{9} \\
& =\frac{161}{72} \\
x_{3} & =\frac{1}{2} \frac{161}{72}+\frac{5}{2} \frac{72}{161}
\end{aligned}
$$

n	x_{n}	$\sqrt{5}-x_{n}$
0	2	2×10^{-1}
1	$\frac{9}{4}$	10^{-2}
2	$\frac{161}{72}$	4×10^{-5}
3	$\frac{1}{2} \frac{161}{72}+\frac{5}{2} \frac{72}{161}$	10^{-10}

Notice that the number of digits of accuracy doubles with each iteration; x_{2} is as good an approximation as you'll ever need, and x_{3} is as good an approximation as the one displayed by your calculator.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

