Riemann Sum Practice

Use a Riemann sum with $n=6$ subdivisions to estimate the value of $\int_{0}^{2}(3 x+2) d x$.

Solution

This solution was calculated using the left Riemann sum, in which $c_{i}=x_{i-1}$ is the left endpoint of each of the subintervals of $[a, b]$. To denote the heights of the rectangles we let $y_{i}=f\left(x_{i}\right)$, and so obtain the following expression for the left Riemann sum:

$$
f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x=\left(y_{0}+y_{1}+\ldots+y_{n-1}\right) \Delta x .
$$

In our example, $n=6, a=0, b=2, \Delta x=\frac{b-a}{n}=\frac{1}{3}$, and the values y_{i} correspond to the height of the graph of $y=3 x+2$ at the left edge of each interval, as illustrated in Figure 1.

Figure 1: Rectangles used to compute the Riemann sum.

We could compute $x_{i}=a+i \Delta x=\frac{i}{3}$ and so $y_{i}=3\left(x_{i}\right)+2=i+2$ and $c_{i}=\frac{i-1}{3}$, or we could simply mark off the left endpoints $0, \frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{1}{3}$ and $\frac{5}{3}$ and then read the heights of the rectangles from the graph. In either case, our formula for the left Riemann sum tells us that the area under the graph of $3 x+2$ between $a=0$ and $b=2$ is approximately:

$$
\left(y_{0}+y_{1}+\ldots+y_{n-1}\right) \Delta x=(2+3+4+5+6+7) \cdot \frac{1}{3}=9
$$

Because $\int_{0}^{2}(3 x+2) d x$ is the area of a trapezoid with width 2 and sides of height 2 and 8 , we can easily check our work:

$$
\int_{0}^{2}(3 x+2) d x=2 \cdot \frac{2+8}{2}=10 .
$$

From the figure we see that the left Riemann sum slightly underestimates the area, so our answer of 9 is probably correct.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

