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SOLUTIONS TO 18.01 EXERCISES 

Unit 4. Applications of integration 

4A. Areas between curves. 

� 1 
1 

= 1/24
1/2

4A-1 a) (3x − 1 − 2x 2)dx = (3/2)x 2 − x − (2/3)x 3 

1/2 

b) x3 = ax = x = ±a or x = 0. There are two enclosed pieces (−a < x < 0⇒
and 0 < x < a) with the same area by symmetry. Thus the total area is: � √a √

a3)dx = ax 2 − (1/2)x 4 = a 2/22 (ax − x 
0 

0 

1

5/2

1 2

1

a1/2a1/2

a3/2

a3/2

(1/2,1/2)

(1,2)

1a 1b 1c 1d

c) x + 1/x = 5/2 = x2 + 1 = 5x/2 = x = 2 or 1/2. Therefore, the area ⇒ ⇒
is � 2 

2 
= 15/8 − 2 ln 2 

1/2
[5/2 − (x + 1/x)]dx = 5x/2 − x 2/2 − ln x 

1/2 

� 1 
1 

d) (y − y 2)dy = y 2/2 − y 3/3 = 1/6
0 

0 

4A-2 First way (dx): � 1 � 1 
1 
= 4/3

0
(1 − x 2)dx = 2 (1 − x 2)dx = 2x − 2x 3/3 

−1 0 

Second way (dy): (x = ±
√
1 − y) � 1 1 

= 4/3 
0 

2 1 − ydy = (4/3)(1 − y)3/2 

0 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

-1                 1

1

y = 1-x 2

x =  1-y
x = - 1-y

4A-3 4 − x2 = 3x = x = 1 or − 4. First way (dx): � 1 

⇒ 

(4 − x 2 − 3x)dx = 4x − x 3/3 − 3x 2/2 
1 

= 125/6 −4 
−4 

Second way (dy): Lower section has area � 3 

−12 
(y/3 + 

� 
4 ydy − = y 2/6 − (2/3)(4 − y)3/2 

3 
= 117/6 

−12 

(-4,-12)

(1,3)

x=y
3

x= 4-yx=- 4-y

4

Upper section has area � 4 4 
= 4/3 

3 
2 4 − ydy = −(4/3)(4 − y)3/2 

3 

(See picture for limits of integration.) Note that 117/6 + 4/3 = 125/6. 

4A-4 sin x = cos x = x = π/4 + kπ. So the area is � 5π/4 

⇒ 

5π/4
(sin x − cos x)dx = (− cos x − sin x)| = 2

√
2π/4 

π/4 
2 
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4. Applications of integration E. Solutions to 18.01 Exercises 

π/4                     
5π/4

4B. Volumes by slicing; volumes of revolution 

� 1 � 1 � 1 

4B-1 a) πy2dx = π(1 − x 2)2dx = 2π (1 − 2x 2 + x 4)dx 
−1 −1 0 

= 2π(x − 2x3/3 + x5/5)��1 
= 16π/15

0 

b) −
a

a πy
2dx = −

a

a π(a
2 − x2)2dx = 2π 

0 
a
(a4 − 2a2x2 + x4)dx 

= 2π(a4x − 2a2x3/3 + x5/5)�a 
= 16πa5/15

0 

� 1 

c) πx2dx = π/3

0


a 

d) πx2dx = πa3/3

0


� 2 � 2 

e) π(2x− x 2)2dx = π(4x 2 − 4x 3 + x 4)dx = π(4x 3/3 − x 4 + x 5/5)��2 
= 

0 
0 0 

16π/15 

(Why (e) the same as (a)? Complete the square and translate.) 

1b 1d 1f 1g 1h

(for 1a, set a = 1) (for 1c, set a = 1) (for 1e, set a = 1)

y=   ax y  = b  (1 − x  /a  )2 2 2 2

∆−a         x                          a a0

y = a − x 2 2 y = x y = 2ax − x 2

0 a
0

b

a

f) 
� 2a 

π(2ax − x2)2dx = 
� 2a 

π(4a2x2 − 4ax3 + x4)dx
0 0 

3 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

= π(4a2x3/3 − ax4 + x5/5)�2 
= 16πa5/15

0 

(Why is (f) the same as (b)? Complete the square and translate.) 

a 

g) axdx = πa3/2

0


a a � 
h) πy2dx = πb2(1 − x 2/a2)dx = πb2(x − x 3/3a 2)�a 

= 2πb2a/3
0 

0 0 

2� 1 � a 

4B-2 a) π(1 − y)dy = π/2 b) π(a 2 − y)dy = πa4/2 �0
1 �0 

a 

c) π(1 − y 2)dy = 2π/3 d) π(a 2 − y 2)dy = 2πa3/3 
2e) x
0 
− 2x + y = 0 = ⇒ x = 1 ±

√0 
1 − y. Using the method of washers: 

� 1 � � � 1 � 
π[(1 + 1 − y)2 − (1 − 1 − y)2]dy = 4π 1 − ydy 

0 0 �1 
= −(8/3)π(1 − y)3/2�� = 8π/3 

0 

(In contrast with 1(e) and 1(a), rotation around the y-axis makes the solid in 
2(e) different from 2(a).) 

2b                           2d                                         2f                                               2g                                   2h

(for 2a, set a = 1)                  (for 2c, set a = 1)                (for 2e, set a = 1)

a 0
0

b

a

∆

x =  a  − y x = y x = a +  a  − y x = y /a x  = a (1 − y /b )2 2 2 2 2 2

y

a2
a (a,a)a, a )2

2

f) x 2 − 2ax + y = 0 = x = a ± a2 − y. Using the method of washers: ⇒ 

a 2 � � a 2 � 
π[(a + a2 − y)2 − (a − a2 − y)2]dy = 4πa a2 − ydy


0 0


= −(8/3)πa(a 2 − y)3/2���1 
= 8πa4/3 

0 

4 
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4. Applications of integration E. Solutions to 18.01 Exercises 

g) Using washers: 
a � 
π(a 2 − (y 2/a)2)dy = π(a 2 y − y 5/5a 2)�a 

= 4πa3/5. 
0 

0 

h) � b � b � 
πx2dy = 2π a 2(1 − y 2/b2)dy = 2π(a 2 y − a 2 y 3/3b2)�

0 

b 
= 4πa2b/3 

−b 0 

(The answer in 2(h) is double the answer in 1(h), with a and b reversed. Can you 
see why?) 

4B-3 Put the pyramid upside-down. By similar triangles, the base of the smaller 
bottom pyramid has sides of length (z/h)L and (z/h)M . 

The base of the big pyramid has area b = LM ; the base of the smaller pyramid 
forms a cross-sectional slice, and has area 

L M

h
z

(z/h)L (z/h)M = (z/h)2LM = (z/h)2b· 
Therefore, the volume is � h � 

(z/h)2bdz = bz3/3h2�h 
= bh/3 

0 
0 

4B-4 The slice perpendicular to the xz-plane are right triangles with base of length 
x and height z = 2x. Therefore the area of a slice is x2 . The volume is 

1

2

1

x

x

2x

side view of
wedge along

y-axis

x

x

y

top view of
wedge along

z-axis

side view of
slice along

y-axis

z

� 1 � 1 

x 2dy = (1 − y 2)dy = 4/3 
−1 −1 

4B-5 One side can be described by y = 
√
3x for 0 ≤ x ≤ a/2. 

Therefore, the volume is 

2 
� a/2 

πy2dx2 
� a/2 

π(
√
3x)2dx = πa3/4 

0 0 
5 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

a/2

y =  3x

4B-6 If the hypotenuse of an isoceles right triangle has length h, then its area 
is h2/4. The endpoints of the slice in the xy-plane are y = ±

√
a2 − x2, so h = 

2
√
a2 − x2 . In all the volume is 

a a 

(h2/4)dx = (a 2 − x 2)dx = 4a 3/3 
−a −a 

4B-7 Solving for x in y = (x − 1)2 and y = (x + 1)2 gives the values 

a

x a -x2    22

top view slice

a -x2    2

x = 1 ±√
y and x = −1 ±√

y 

The hard part is deciding which sign of the square root representing the endpoints 
of the square. 

-1 1

1
x = - +  y

(x-  y)2

1 x =  -  y1

Method 1: The point (0, 1) has to be on the two curves. Plug in y = 1 and x = 0 
to see that the square root must have the opposite sign from 1: x = 1 − √

y and 
x = −1 + 

√
y. 

Method 2: Look at the picture. x = 1+ 
√
y is the wrong choice because it is the 

right half of the parabola with vertex (1, 0). We want the left half: x = 1 − √
y. 

Similarly, we want x = −1+ 
√
y, the right half of the parabola with vertex (−1, 0). 

Hence, the side of the square is the interval −1 + 
√
y ≤ x ≤ 1 −√

y, whose length 
is 2(1 −√

y), and the � 1 � 1 

Volume = (2(1 −√
y)2dy = 4 (1 − 2

√
y + y)dy = 2/3 . 

0 0 
6 
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4. Applications of integration E. Solutions to 18.01 Exercises 

4C. Volumes by shells 

4C-1 a) � b+a � b+a � 
Shells: (2πx)(2y)dx = 4πx a2 − (x − b)2dx 

b−a b−a 

b) (x − b)2 = a2 − y2 = ⇒ x = b ± a2 − y2 � a � a � � 
Washers: π(x2

2 − x1
2)dy = π((b + a2 − y2)2 − (b − a2 − y2)2)dy 

−a −�a a � 
= π 4b a2 − y2dy 

−a 

b-a                                  b+a

a

-a

b-a                                  b+a

a

-a

Shells
Washers

y = -   a  - (x - b}2 2

2 2

x = b +   a  - y 2 2

x = b -   a  - y 2 2y =   a  - (x - b)

a � 
c) a2 − y2dy = πa2/2, because it’s the area of a semicircle of radius a. 

−a 

Thus (b) = Volume of torus = 2π2 a 2b⇒ 

d) z = x − b, dz = dx � b+a � � a � � a � 
4πx a2 − (x − b)2dx = 4π(z + b) a2 − z2dz = 4πb a2 − z2dz 

b−a −a −a 

because the part of the integrand with the factor z is odd, and so it integrates to 0. 

� 1 � 1 

4C-2 2πxydx = 2πx3dx = π/2 
0 0 

y = x

4C−2  (shells)          4C−3a (shells)           4C−3b (discs)

y =  x x = y2

1 1

1

2

7 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

� 1 � 1 

4C-3 Shells: 2πx(1 − y)dx = 2πx(1 −
√
x)dx = π/5 

0 0 

� 1 � 1 

Disks: πx2dy = πy4dy = π/5

0 0


� 1 � 1 � 
4C-4 a) 2πy(2x)dy = 4π y 1 − ydy 

0 0 

2 2 a a � 
b) 2πy(2x)dy = 4π y a2 − ydy


0 0


� 1 

c) 2πy(1 − y)dy 
0 

a 

d) 2πy(a − y)dy 
0 

2e) x − 2x + y = 0 = ⇒ x = 1 ±
√
1 − y. 

The interval 1 − 1 − y ≤ x ≤ 1 + 1 − y has length 2 1 − y � 1 � � 1 � 
= V = 2πy(2 1 − y)dy = 4π y 1 − ydy⇒ 

0 0 

f) x2 − 2ax + y = 0 = ⇒ x = a ± a2 − y. 

The interval a − a2 − y ≤ x ≤ a + a2 − y has length 2 a2 − y 

2 2 a � a � 
= V = 2πy(2 a2 − ydy = 4π y a2 − ydy⇒ 

0 0 

a 0
0

b

a

x =  a  - y x = y x = a +  a  - y x = y /a2 2 2

a2
a (a,a)

4b 4d 4f 4g 4h

(right)
x = a -  a  - y

x = a 1 - y /b 2 2

(a, a )2

x  =  -   a  - y  (left) 22

a 

g) 2πy(a − y 2/a)dy 
0 

8 
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4. Applications of integration E. Solutions to 18.01 Exercises 

� b � b 

h) 2πyxdy = 2πy(a 2(1 − y 2/b2)dy 
0 0 

(Why is the lower limit of integration 0 rather than −b?) 

� 1 � 1 � 1 

4C-5 a) 2πx(1 − x 2)dx c) 2πxydx = 2πx2dx 
0 0 0 

a a a 

b) 2πx(a 2 − x 2)dx d) 2πxydx = 2πx2dx 
0 0 0 

� 2 � 2 � 2a � 2a 

e) 2πxydx = 2πx(2x − x 2)dx f) 2πxydx = 2πx(ax −
0 0 0 0 

∆-a         x                          a

(for 5a, set  a =   )1

a0

5b                              5d

y = a - x 2 2 y = x
for 5c, set a =  )1

5f

y = 2ax - x 
(for 5e, set a =  )

2

1

0 a

y =  ax

5g

y = b 1 - x /a

y = -b 1 - x /a

2 2

b

a

5h

b

2 2

x 2)dx g) 
a 

2πxydx = 
a 

2πx
√
axdx 

0 0 

a a 

h) 2πx(2y)dx = 2πx(2b2(1 − x 2/a2))dx

0 0


(Why did y get doubled this time?) 

4C-6 � b � b � 
2πx(2y)dx = 2πx(2 b2 − x2)dx 

a a �b 
= −(4/3)π(b2 − x 2)3/2� = (4π/3)(b2 − a 2)3/2 

a 

4D. Average value 

4D-1 Cross-sectional area at x is = πy2 = π (x2)2 = πx4 . Therefore,· 
9 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

a b

base of removed
cylinder

y=- b - x

y= b - x2 2

2 2

Shells

� 2 2
πx51 16π 

= .πx4 dx =average cross-sectional area = 
2 10 50 0 

� 2a 2a
1 dx 

4D-2 Average = = ln x 
1 1 1 2a ln 2 

a 
(ln 2a − ln a) = ln 

a 
= . 

a a 
= 

a x aa a 

4D-3 Let s(t) be the distance function; then the velocity is v(t) = s�(t) 

� b 

Average value of velocity = 
1 

s�(t)dt = 
s(b) − s(a) 

by FT1 
b − a a b − a 

= average velocity over time interval [a,b] 

4D-4 By symmetry, we can restrict P to the upper semicircle. 

By the law of cosines, we have |PQ|2 = 12 + 12 − 2 cos θ. Thus 

� π1 1 π
average of |PQ|2 = 

π 
(2 − 2 cos θ)dθ = 

π 
[2θ − 2 sin θ] = 2 0 

0 

(This is the value of |PQ|2 when θ = π/2, so the answer is reasonable.)) 

P

Q
θ

1

1

x1 
4D-5 By hypothesis, g(x) = f(t)dt To express f(x) in terms of g(x), 

x 0 
multiply thourgh by x and apply the Sec. Fund. Thm: 

10 
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4. Applications of integration E. Solutions to 18.01 Exercises 

x 

f(t)dt = xg(x) f(x) = g(x) + xg�(x) , by FT2..⇒
0 

� T1 1 A0 A0
4D-6 Average value of A(t) = 

T 0 
A0e rtdt = 

T r
e rt|T = 

rT 
(e rT − 1)0 

(rT )2 

If rT is small, we can approximate: e rT ≈ 1 + rT + , so we get 
2 

A0 (rT )2 rT 
A(t) ≈ (rT + ) = A0(1 + ) . 

rT 2 2 

(If T ≈ 0, at the end of T years the interest added will be A0rT ; thus the average 
is approximately what the account grows to in T/2 years, which seems reasonable.) 

� b 

4D-7 
1 

x 2dx = b2/3 
b 0 

4D-8 The average on each side is the same as the average 

over all four sides. Thus the average distance is � a/21 
x2 + (a/2)2dx 

a −a/2 

x

a/2
x + (a/2)2 2

Can’t be evaluated by a formula until Unit 5. The average of the square of the 
distance is � a/2 � a/21 2 

(x 2 + (a/2)2)dx = (x 2 + (a/2)2)dx = a 2/3 
a a−a/2 0 � π/a 1 1 π/a 

4D-9 sin ax dx − cos(ax)
π/a π 

= 2/π 
0 0 

4D’. Work 

4D’-1 According to Hooke’s law, we have F = kx, where F is the force, x is 
the displacement (i.e., the added length), and k is the Hooke’s law constant for the 

11 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

spring. 
To find k, substitute into Hooke’s law: 2, 000 = k (1/2) k = 4000. · ⇒
To find the work W , we have 

W = 
� 6 

F dx = 
� 6 

4000x dx = 2000x 2
�6
0 
= 72, 000 inch-pounds = 6, 000 foot-pounds. 

0 0 

4D’-2 Let W (h) = weight of pail and paint at height h. 
1W (0) = 12, W (30) = 10 ⇒ W (h) = 12 − 15 h, since the pulling and leakage 

both occur at a constant rate. � 30 � 30 h h2 �30 

work = W (h) dh = (12 − ) dh = 12h − = 330 ft-lbs. 
15 300 0 0 

4D’-3 Think of the hose as divided into many equal little infinitesimal pieces, of 
length dh, each of which must be hauled up to the top of the building. 

The piece at distance h from the top end has weight 2 dh; to haul it up to the 
top requires 2h dh ft-lbs. Adding these up, � 50 �50 

total work = 2h dh = h2 = 2500ft-lbs. 
0 

0 

gm1m2
4D’-4 If they are x units apart, the gravitational force between them is . 

x2 � nd �nd � � � � 

work = 
gm1m2 

dx = − 
gm1m2 

= −gm1m2 
1 1

= 
gm1m2 n − 1 

. 
x2 x nd 

−
d d nd d 

gm1m2
The limit as n → ∞ is . 

d 

4E. Parametric equations 

4E-1 y − x = t2 , y − 2x = −t. Therefore, 

y − x = (y − 2x)2 = ⇒ y 2 − 4xy + 4x 2 − y + x = 0 (parabola) 

4E-2 x2 = t2 + 2 + 1/t2 and y2 = t2 − 2 + 1/t2 . Subtract, getting the hyperbola 
x2 − y2 = 4 

4E-3 (x − 1)2 + (y − 4)2 = sin2 θ + cos2 t = 1 (circle) 

4E-4 1 + tan2 t = sec2 t = 1 + x2 = y2 (hyperbola) ⇒ 

4E-5 x = sin 2t = 2 sin t cos t = ±2 1 − y2y. This gives x2 = 4y2 − 4y4 . 
12 
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4. Applications of integration E. Solutions to 18.01 Exercises 

4E-6 y� = 2x, so t = 2x and 

x = t/2, y = t2/4 

4E-7 Implicit differentiation gives 2x + 2yy� = 0, so that y� = −x/y. So the 
parameter is t = −x/y. Substitute x = −ty in x2 + y2 = a2 to get 

t2 y 2 + y 2 = a 2 = y 2 = a 2/(1 + t2)⇒ 

Thus 
a −at 

y = , x =√
1 + t2 

√
1 + t2 

For −∞ < t < ∞, this parametrization traverses the upper semicircle y > 0 (going 
clockwise). One can also get the lower semicircle (also clockwise) by taking the 
negative square root when solving for y, 

4E-8 The tip Q of the hour hand is given in terms of the angle θ by Q = (cos θ, sin θ) 

Next we express θ in terms of the time parameter (hours). We have t 

θ θ decreases linearly with t = 

π 

−a at 
y = , x =√

1 + t2 
√
1 + t2 

(units are meters). 

π/2, t = 0

π/3, t = 1


Thus we get θ = 2 −
ππ −3π (t − 0) 

= 2 · 
2 1 − 0 

πθ − t.= .⇒ 6 

Q

θ
P

Finally, for the snail’s position P , we have


P = (t cos θ, t sin θ) , where t increases from 0 to 1. So,


π π π π 
2 −

4F. Arclength 

4F-1 a) ds = 
� 
1 + (y�)2dx = 

√
26dx. Arclength = 

� 1 √
26dx = 

√
26. 

0 
13 

π πx = t cos( t) = t sin t, y = t sin(
2 
− t) = t cos t6 66 6 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

b) ds = 1 + (y�)2dx = 1 + (9/4)xdx. � 1 � ��1 
Arclength = 1 + (9/4)xdx = (8/27)(1 + 9x/4)3/2� = (8/27)((13/4)3/2 − 1) 

0 0 

c) y� = −x−1/3(1 − x 2/3)1/2 = − x−2/3 − 1. Therefore, ds = x−1/3dx, and � 1 �1 
Arclength = x−1/3dx = (3/2)x 2/3�� = 3/2 

0 0 

d) y� = x(2 + x 2)1/2 . Therefore, ds = 1 + 2x2 + x4dx = (1 + x 2)dx and � 2 �
Arclength = (1 + x 2)dx = x + x 3/3�

1

2 
= 10/3 

1 

x4F-2 y� = (e − e−x)/2, so the hint says 1 + (y�)2 = y2 and ds = 1 + (y�)2dx = 
ydx. Thus, � b �


Arclength = (1/2) (e x + e−x)dx = (1/2)(e x − e−x)�b 
= (e b − e−b)/2


0 
0 

4F-3 y� = 2x, 
� 
1 + (y�)2 = 

√
1 + 4x2 . Hence, arclength = 

� b � 
1 + 4x2dx. 

0 

4F-4 ds = 
� 
(dx/dt)2 + (dy/dt)2dt = 

√
4t2 + 9t4dt. Therefore, � 2 � � 2


Arclength = 4t2 + 9t4dt = (4 + 9t2)1/2tdt

0 0
�2 

= (1/27)(4 + 9t2)3/2�� = (403/2 − 8)/27 
0 

4F-5 dx/dt = 1 − 1/t2 , dy/dt = 1 + 1/t2 . Thus 

ds = (dx/dt)2 + (dy/dt)2dt = 2 + 2/t4dt and � 2 � 
Arclength = 2 + 2/t4dt 

1 

4F-6 a) dx/dt = 1 − cos t, dy/dt = sin t. 

ds/dt = 
� 
(dx/dt)2 + (dy/dt)2 = 

√
2 − 2 cos t (speed of the point) 

Forward motion (dx/dt) is largest for t an odd multiple of π (cos t = −1). Forward 
motion is smallest for t an even multiple of π (cos t = 1). (continued )→

Remark: The largest forward motion is when the point is at the top of the wheel 
and the smallest is when the point is at the bottom (since y = 1 − cos t.) 

� 2π � 2π 
2π

b) 
√
2 − 2 cos tdt = 2 sin(t/2)dt = −4 cos(t/2)| = 8 0 

0 0 
14 
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4. Applications of integration E. Solutions to 18.01 Exercises 

� 2π � 
4F-7 a2 sin2 t + b2 cos2 tdt 

0 

4F-8 dx/dt = et(cos t − sin t), dy/dt = et(cos t + sin t). 

tds = 
� 

e2t(cos t − sin t)2 + e2t(cos t + sin t)2dt = e 
� 
2 cos2 t + 2 sin2 tdt = 

√
2e tdt 

Therefore, the arclength is � 10 
10

√
2e tdt = 

√
2(e − 1) 

0 

4G. Surface Area 

4G-1 The curve y = 
√
R2 − x2 for a ≤ x ≤ b is revolved around the x-axis. 

Since we have y� = −x/
√
R2 − x2, we get 

a b

y=  R - x2 2

ds = 1 + (y�)2dx = 1 + x2/(R2 − x2)dx = R2/(R2 − x2)dx = (R/y)dx 

Therefore, the area element is 

dA = 2πyds = 2πRdx 

and the area is � b 

2πRdx = 2πR(b − a) 
a 

4G-2 Limits are 0 ≤ x ≤ 1/2. ds = 
√
5dx, so � 1/2 

dA = 2πyds = 2π(1 − 2x)
√
5dx = A = 2π

√
5 (1 − 2x)dx = 

√
5π/2⇒ 

0 

4G-3 Limits are 0 ≤ y ≤ 1. x = (1 − y)/2, dx/dy = −1/2. Thus 

ds = 1 + (dx/dy)2dy = 5/4dy; 

dA = 2πyds = π(1 − y)(
√
5/2)dx = ⇒ A = (

√
5π/2) 

� 1
(1 − y)dy = 

√
5π/4

0 
15 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

4G−3

4G−2

1

1/2

y = 1 − 2x

x = (1 − y)/2

� � 4 � 
4G-4 A = 2πyds = 2πx2 1 + 4x2dx 

0 

4G-5 x = 
√
y, dx/dy = −1/2

√
y, and ds = 

� 
1 + 1/4ydy � � 2 � 

A = 2πxds = 2π
√
y 1 + 1/4ydy 

0
� 2 �

= 2π y + 1/4dy 

0 �2 
= (4π/3)(y + 1/4)3/2

�� = (4π/3)((9/4)3/2 − (1/4)3/2) 
0 

= 13π/3 

4G-6 y = (a 2/3 − x 2/3� 
)3/2 = ⇒ y� = −x−1/3(a 2/3 − x 2/3)1/2 . Hence 

ds = 1 + x−2/3(a2/3 − x2/3)dx = a 1/3 x−1/3dx 

Therefore, (using symmetry on the interval −a ≤ x ≤ a) 

y = (a   - x   )2/3 2/3 3/2
-a                a

a 

A = 2πyds = 2 2π(a 2/3 − x 2/3)3/2 a 1/3 x−1/3dx 
0 

= (4π)(2/5)(−3/2)a 1/3(a 2/3 − x 2/3)5/2��a 

0 

= (12π/5)a 2 

4G-7 a) Top half: y = a2 − (x − b)2 , y� = (b − x)/y. Hence, 

ds = 1 + (b − x)2/y2dx = (y2 + (b − x)2)/y2dx = (a/y)dx 

Since we are only covering the top half we double the integral for area: � � b+a xdx 
A = 2πxds = 4πa � 

b−a a2 − (x − b)2 

b) We need to rotate two curves x2 = b + a2 − y2


16
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4. Applications of integration E. Solutions to 18.01 Exercises 

y =  a - (x-b)

b
a a

y = - a  - (x-b)

2 2

2 2

upper and lower surfaces are
symmetrical and equal

and x1 = b − a2 − y2 around the y-axis. The value 

dx2/dy = −(dx1/dy) = −y/ a2 − y2 

So in both cases, 

ds = 1 + y2/(a2 − y2)dy = (a/ a2 − y2)dy 

The integral is 

x = b +  a - y

x = b -  a - y

2 2

2 2

inner and outer surfaces are
not symmetrical and not equal

a ady
A = 2πx2ds + 2πx1ds = 2π(x1 + x2) � 

−a a2 − y2 

But x1 + x2 = 2b, so 
a dy

A = 4πab � 
−a a2 − y2 

c) Substitute y = a sin θ, dy = a cos θdθ to get 

A = 4πab 
� π/2 a cos θdθ 

= 4πab 
� π/2 

dθ = 4π2ab 
−π/2 a cos θ −π/2 

4H. Polar coordinate graphs 

4H-1 We give the polar coordinates in the form (r, θ): 

17 



E. Solutions to 18.01 Exercises 4. Applications of integration 

a) (3, π/2) b) (2, π) c) (2, π/3) d) (2
√
2, 3π/4) 

e) (
√
2, −π/4 or 7π/4)f) (2, −π/2 or 3π/2) 

g) (2, −π/6 or 11π/6)h) (2
√
2, −3π/4 or 5π/4) 

4H-2 a) (i) (x − a)2 + y2 = a2 ⇒ x2 − 2ax + y2 = 0 ⇒ r2 − 2ar cos θ = 0 ⇒ 
r = 2a cos θ. 

(ii) ∠OPQ = 90o, since it is an angle inscribed in a semicircle.

In the right triangle OPQ, |OP | = |OQ| cos θ, i.e., r = 2a cos θ.


b) (i) Analogous to 4H-2a(i); ans: r = 2a sin θ. 
(ii) analogous to 4H-2a(ii); note that ∠OQP = θ, since both angles are comple

ments of ∠POQ. 

c) (i) OQP is a right triangle, |OP | = r, and ∠POQ = α − θ.

The polar equation is r cos(α − θ) = a, or in expanded form,


r(cos α cos θ + sin α sin θ) = a , or finally 
x y

+ = 1,
A B 

a 
since from the right triangles OAQ and OBQ, we have cos α = , sin α = 

A 
a 

cos BOQ = . 
B 

d) Since |OQ| = sin θ, we have: 
if P is above the x-axis, sin θ > 0, OP | = |OQ| − |QR|, or r = a − a sin θ; 
if P is below the x-axis, sin θ < 0, OP | = |OQ| + |QR|, or r = a + a| sin θ| = 
a − a sin θ. Thus the equation is r = a(1 − sin θ). 

e) Briefly, when P = (0, 0), |PQ||PR| = a · a = a2, the constant. 
Using the law of cosines, 

|PR|2 = r2 + a2 − 2ar cos θ; 
|PQ|2 = r2 + a2 − 2ar cos(π − θ) = r2 + a2 + 2ar cos θ 

Therefore 
|PQ|2|PR|2 = (r2 + a2)2 − (2ar cos θ)2 = (a2)2 

which simplifies to 
r2 = 2a2 cos 2θ. 

4H-3 a) r = sec θ = r cos θ = 1 = x = 1 ⇒ ⇒ 

b) r = 2a cos θ = r2 = r 2a cos θ = 2ax = x2 + y2 = 2ax⇒ · ⇒ 

c) r = (a + b cos θ) (This figure is a cardiod for a = b, a limaçon with a loop 
for 0 < a < b, and a limaçon without a loop for a > b > 0.) 

18 
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4. Applications of integration E. Solutions to 18.01 Exercises 

r2 = ar + br cos θ = ar + bx = x2 + y2 = a x2 + y2 + bx· ⇒ 

r

θ
1

a 2a
r

θ
x

y

r r r

θ θθ

limacon  a<b cardioid (a=b) limacon a>b

ellipse 

parabola
hyperbolab=|c|

b>|c|

b<|c|

8a 8b 8c 8d

(d) r = a/(b + c cos θ) = ⇒ 

= ⇒ 

= ⇒ 

r(b + c cos θ) = a = ⇒ rb + cx = a 

rb = a − cx = ⇒ r 2b2 = a 2 − 2acx + c 2 x 2 

a 2 − 2acx + (c 2 − b2)x 2 − b2 y 2 = 0 

(e) r = a sin(2θ) = ⇒ 

= ⇒ 

r = 2a sin θ cos θ = 2axy/r2 

r 3 = 2axy = ⇒ (x 2 + y 2)3/2 = 2axy 

r = a cos 2 r = a sin 2 r  = a cos 2 r  = a sin 2 θθθθ 2 22 2

2x2 

f) r = a cos(2θ) = a(2 cos2 θ − 1) = a( 
x2 + y2 

− 1) = ⇒ (x 2 + y 2)3/2 = 

a(x 2 − y 2) 

g) r 2 = a 2 sin(2θ) = 2a 2 sin θ cos θ = 2a 2 xy 
= r 4 = 2a 2 xy = (x 2 +y 2)2 = 

r2 
⇒ ⇒ 

2axy 

2x2 

h) r 2 = a 2 cos(2θ) = a 2( 
x2 + y2 

− 1) =⇒ (x 2 + y 2)2 = a 2(x 2 − y 2) 

aθi) r = e = ⇒ ln r = aθ = ⇒ ln 
� 

x2 + y2 = a tan−1 

x

y 

4I. Area and arclength in polar coordinates 
19 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

4I-1 (dr/dθ)2 + r2dθ 

a) sec2 θdθ 

b) 2adθ 

c) a2 + b2 + 2ab cos θdθ 

a
√
b2 + c2 + 2bc cos θ 

d) dθ 
(b + c cos θ)2 

e) a 4 cos2(2θ) + sin2(2θ)dθ 

f) a 4 sin2(2θ) + cos2(2θ)dθ 

g) Use implicit differentiation: 

2rr� = 2a 2 cos(2θ) = r� = a 2 cos(2θ)/r = (r�)2 = a 2 cos 2(2θ)/ sin(2θ)⇒ ⇒ 

Hence, using a common denominator and cos2 +sin2 = 1, � a 
ds = a2 cos2(2θ)/ sin(2θ) + a2 sin(2θ)dθ = � dθ 

sin(2θ) 

h) This is similar to (g): 

a 
ds = � dθ 

cos(2θ) 

i) 1 + a2e aθdθ 

4I-2 dA = (r2/2)dθ. The main difficulty is to decide on the endpoints of integra
tion. Endpoints are successive times when r = 0. 

cos(3θ) = 0 = 3θ = π/2 + kπ = θ = π/6 + kπ/3, k an integer. ⇒ ⇒ � π/6 � π/6


Thus, A = (a 2 cos 2(3θ)/2)dθ = a 2 cos 2(3θ)dθ.

−π/6 0


(Stop here in Unit 4. Evaluated in Unit 5.) 

� � π 

4I-3 A = (r 2/2)dθ = (e 6θ/2)dθ = (1/12)e 6θ��π 
= (e 6π − 1)/12 

0 
0 

20 
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4. Applications of integration E. Solutions to 18.01 Exercises 

θ

θ

= π/6

=−π/6
three-leaf rose
three empty sectors

3πe 1

4I-4 Endpoints are successive time when r = 0. 

sin(2θ) = 0 = 2θ = kπ, k an integer. ⇒� π/2 
π/2 

= a
0 

2/2. 2/2)dθ = (a 2/2) sin(2θ)dθ = −(a 2/4) cos(2θ)Thus, A = (r 
0 

4I-5 r = 2a cos θ, ds = 2adθ, −π/2 < θ < π/2. (The range was chosen carefully so 
that r > 0.) Total length of the circle is 2πa. Since the upper and lower semicircles 
are symmetric, it suffices to calculate the average over the upper semicircle: 

2a
r = 2a cos θ

� π/2 π/2
1 4a 4a 

2a cos θ(2a)dθ = sin θ = 
πa π π0 0 

4I-6 a) Since the upper and lower halves of the cardiod are symmetric, it suffices 
to calculate the average distance to the x-axis just for a point on the upper half. 
We have r = a(1 − cos θ), and the distance to the x-axis is r sin θ, so 

� π � π11 a 
(1 − cos θ)2 

2π 

π 2a 
= 

0 π 
r sin θdθ = a(1 − cos θ) sin θdθ = 

ππ 0 0 
21 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

P

Q 0

r

(b) ds = (dr/dθ)2 + r2dθ = a (1 − cos θ)2 + sin2 θdθ 

= a
√
2 − 2 cos θdθ = 2a sin(θ/2)dθ, using the half angle formula. � 2π 

2π
arclength = 2a sin(2θ)dθ = −4a cos(θ/2)| = 8a0 

0 

For the average, don’t use the half-angle version of the formula for ds, and use the 
interval −π < θ < π, where sin θ is odd: � π � π 

Average = 
8

1 
a −π 

|r sin θ|a
√
2 − 2 cos θdθ = 

8

1 
a −π 

| sin θ|
√
2a � 2(1 − cos θ)3/2dθ 

√
2a 

� π √
2a ��π 

4 
=

4 0 
(1 − cos θ)3/2 sin θdθ = 

10 
(1 − cos θ)5/2�� =

5 
a 

0 

4I-7 dx = −a sin θdθ. So the semicircle y > 0 has area � a � 0 � π 

ydx = a sin θ(−a sin θ)dθ = a 2 sin2 θdθ 
−a π 0 

But � π � π 

sin2 θdθ =
1 

(1 − cos(2θ)dθ = π/2 
0 02 

So the area is πa2/2 as it should be for a semicircle. 

Arclength: ds2 = dx2 + dy2 

= ⇒ (ds)2 = (−a sin θdθ)2 + (a cos θdθ)2 = a2(sin2 dθ + cos2 dθ)(dθ)2 

= ds = adθ (obvious from picture). ⇒ 

-a a

ds

θ

dθ

� � 2π 

ds = adθ = 2πa 
0 
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4. Applications of integration E. Solutions to 18.01 Exercises 

4J. Other applications


4J-1 Divide the water in the hole into n equal circular discs of thickness Δy.� �2
1 

Volume of each disc: π Δy
2 

π 
Energy to raise the disc of water at depth yi to surface: kyiΔy. 

4 
Adding up the energies for the different discs, and passing to the limit, 

� 2n
π 

� 100 π πk y
�100 

πk104 

E = lim kyiΔy = ky dy = = . 
n→∞ 

1 
4 4 4 2 0 80 

4J-2 Divide the hour into n equal small time intervals Δt. 
At time ti, i = 1, . . . , n, there are x0e

−kti grams of material, producing approx
imately rx0e

−kti Δt radiation units over the time interval [ti, ti +Δt]. 
Adding and passing to the limit, 

�n � 60 e−kt �60 
r x0 � � 

R = lim r x0e
−kti Δt = r x0e

−kt dt = r x0 = 1−e−60k . 
n→∞ 

1 
−k k0 0 

4J-3 Divide up the pool into n thin concentric cylindrical shells, of radius ri, 
i = 1, . . . , n, and thickness Δr. 

The volume of the i-th shell is approximately 2π riD Δr. 
k 

The amount of chemical in the i-th shell is approximately 2π riD Δr. 
1 + ri 

2


Adding, and passing to the limit,


n � R� k r 
A = lim 2π riD Δr = 2πkD dr 

n→∞ 
1 

1 + ri 
2

0 1 + r2 �R 

= πkD ln(1 + r 2) = πkD ln(1 + R2) gms. 
0 

4J-4 Divide the time interval into n equal small intervals of length Δt by the 
points ti, i = 1, . . . , n. 

The approximate number of heating units required to maintain the temperature 
at 75o over the time interval [ti, ti +Δt]: is 

πti
75 − 10 6 − cos k Δt. 

12 
· 
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E. Solutions to 18.01 Exercises 4. Applications of integration 

Adding over the time intervals and passing to the limit: 
n � � ��� πti


total heat = lim 75 − 10 6 − cos k Δt

n→∞ 

1 
12 

· 

� 24 � � �� 
πt 

= k 75 − 10 6 − cos dt 
120 � 24 � � � �24

πt 120 πt 
= k 15 + 10 cos dt = k 15t + sin = 360k. 

12 π 120 0 

4J-5 Divide the month into n equal intervals of length Δt by the points ti, i = 
1, . . . , n. 

Over the time interval [ti.ti +Δt], the number of units produced is about (10 + 
ti)Δt. 

The cost of holding these in inventory until the end of the month is c(30 − 
ti)(10 + ti)Δt. 

Adding and passing to the limit, 
n

total cost = lim c(30 − ti)(10 + ti)Δt 
n→∞ 

1 � 30 � 
t3 �30 

= c(30 − t)(10 + t) dt = c 300t + 10t2 − 
3 

= 9000c. 
0 0 

4J-6 Divide the water in the tank into thin horizontal slices of width �dy. 
If the slice is at height y above the center of the tank, its radius is r2 − y2 . 

This formula for the radius of the slice is correct even if y < 0 – i.e., the slice is 
below the center of the tank – as long as −r < y < r, so that there really is a slice 
at that height. 

Volume of water in the slice = π(r2 − y2) dy 
Weight of water in the slice = πw(r2 − y2) dy 
Work to lift this slice from the ground to the height h+y = πw(r2 −y2) dy (h+y). 

r 

Total work = πw(r 2 − y 2)(h + y) dy 
−r� r 

= πw (r 2h + r 2 y − hy2 − y 3) � 
−r �r 

= πw r 2hy + 
r2

2 
y2 

− 
hy

3 

3 

− 
y

4 

4 

. 
−r 

In this last line, the even powers of y have the same value at −r and r, so contribute 
0 when it is evaluated; we get therefore 

= πwh r 2 y − 
y

3 

3 r 

= 2πwh r 3 − 
r

3 

3 

= 
4

3 
πwhr3 . 

−r 
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