SOLUTIONS TO 18.01 EXERCISES

Unit 4. Applications of integration

4A. Areas between curves.

$\mathbf{4 A - 1}$ a) $\int_{1 / 2}^{1}\left(3 x-1-2 x^{2}\right) d x=(3 / 2) x^{2}-x-\left.(2 / 3) x^{3}\right|_{1 / 2} ^{1}=1 / 24$
b) $x^{3}=a x \Longrightarrow x= \pm a$ or $x=0$. There are two enclosed pieces $(-a<x<0$ and $0<x<a$) with the same area by symmetry. Thus the total area is:

$$
2 \int_{0}^{\sqrt{a}}\left(a x-x^{3}\right) d x=a x^{2}-\left.(1 / 2) x^{4}\right|_{0} ^{\sqrt{a}}=a^{2} / 2
$$

1a

1b

1 c

1d
c) $x+1 / x=5 / 2 \Longrightarrow x^{2}+1=5 x / 2 \Longrightarrow x=2$ or $1 / 2$. Therefore, the area
is

$$
\int_{1 / 2}^{2}[5 / 2-(x+1 / x)] d x=5 x / 2-x^{2} / 2-\left.\ln x\right|_{1 / 2} ^{2}=15 / 8-2 \ln 2
$$

d) $\int_{0}^{1}\left(y-y^{2}\right) d y=y^{2} / 2-y^{3} /\left.3\right|_{0} ^{1}=1 / 6$

4A-2 First way ($d x$):

$$
\int_{-1}^{1}\left(1-x^{2}\right) d x=2 \int_{0}^{1}\left(1-x^{2}\right) d x=2 x-2 x^{3} /\left.3\right|_{0} ^{1}=4 / 3
$$

Second way $(d y):(x= \pm \sqrt{1-y})$

$$
\int_{0}^{1} 2 \sqrt{1-y} d y=\left.(4 / 3)(1-y)^{3 / 2}\right|_{0} ^{1}=4 / 3
$$

COPYRIGHT DAVID JERISON AND MIT 1996, 2003

4A-3 $4-x^{2}=3 x \Longrightarrow x=1$ or -4 . First way $(d x)$:

$$
\int_{-4}^{1}\left(4-x^{2}-3 x\right) d x=4 x-x^{3} / 3-3 x^{2} /\left.2\right|_{-4} ^{1}=125 / 6
$$

Second way $(d y)$: Lower section has area

$$
\int_{-12}^{3}\left(y / 3+\sqrt{4-y} d y=y^{2} / 6-\left.(2 / 3)(4-y)^{3 / 2}\right|_{-12} ^{3}=117 / 6\right.
$$

Upper section has area

$$
\int_{3}^{4} 2 \sqrt{4-y} d y=-\left.(4 / 3)(4-y)^{3 / 2}\right|_{3} ^{4}=4 / 3
$$

(See picture for limits of integration.) Note that $117 / 6+4 / 3=125 / 6$.

4A-4 $\sin x=\cos x \Longrightarrow x=\pi / 4+k \pi$. So the area is

$$
\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x=\left.(-\cos x-\sin x)\right|_{\pi / 4} ^{5 \pi / 4}=2 \sqrt{2}
$$

4B. Volumes by slicing; volumes of revolution

4B-1 a) $\int_{-1}^{1} \pi y^{2} d x=\int_{-1}^{1} \pi\left(1-x^{2}\right)^{2} d x=2 \pi \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x$

$$
=\left.2 \pi\left(x-2 x^{3} / 3+x^{5} / 5\right)\right|_{0} ^{1}=16 \pi / 15
$$

b) $\int_{-a}^{a} \pi y^{2} d x=\int_{-a}^{a} \pi\left(a^{2}-x^{2}\right)^{2} d x=2 \pi \int_{0}^{a}\left(a^{4}-2 a^{2} x^{2}+x^{4}\right) d x$

$$
=\left.2 \pi\left(a^{4} x-2 a^{2} x^{3} / 3+x^{5} / 5\right)\right|_{0} ^{a}=16 \pi a^{5} / 15
$$

c) $\int_{0}^{1} \pi x^{2} d x=\pi / 3$
d) $\int_{0}^{a} \pi x^{2} d x=\pi a^{3} / 3$
e) $\int_{0}^{2} \pi\left(2 x-x^{2}\right)^{2} d x=\int_{0}^{2} \pi\left(4 x^{2}-4 x^{3}+x^{4}\right) d x=\left.\pi\left(4 x^{3} / 3-x^{4}+x^{5} / 5\right)\right|_{0} ^{2}=$ $16 \pi / 15$
(Why (e) the same as (a)? Complete the square and translate.)

f) $\int_{0}^{2 a} \pi\left(2 a x-x^{2}\right)^{2} d x=\int_{0}^{2 a} \pi\left(4 a^{2} x^{2}-4 a x^{3}+x^{4}\right) d x$

$$
=\left.\pi\left(4 a^{2} x^{3} / 3-a x^{4}+x^{5} / 5\right)\right|_{0} ^{2}=16 \pi a^{5} / 15
$$

(Why is (f) the same as (b)? Complete the square and translate.)
g) $\int_{0}^{a} a x d x=\pi a^{3} / 2$
h) $\int_{0}^{a} \pi y^{2} d x=\int_{0}^{a} \pi b^{2}\left(1-x^{2} / a^{2}\right) d x=\left.\pi b^{2}\left(x-x^{3} / 3 a^{2}\right)\right|_{0} ^{a}=2 \pi b^{2} a / 3$

4B-2
a) $\int_{0_{1}}^{1} \pi(1-y) d y=\pi / 2$
b) $\int_{0}^{a^{2}} \pi\left(a^{2}-y\right) d y=\pi a^{4} / 2$
c) $\int_{0}^{1} \pi\left(1-y^{2}\right) d y=2 \pi / 3$
d) $\int_{0}^{a} \pi\left(a^{2}-y^{2}\right) d y=2 \pi a^{3} / 3$
e) $x^{2}-2 x+y=0 \Longrightarrow x=1 \pm \sqrt{1-y}$. Using the method of washers:

$$
\begin{aligned}
\int_{0}^{1} \pi\left[(1+\sqrt{1-y})^{2}-(1-\sqrt{1-y})^{2}\right] d y & =\int_{0}^{1} 4 \pi \sqrt{1-y} d y \\
& =-\left.(8 / 3) \pi(1-y)^{3 / 2}\right|_{0} ^{1}=8 \pi / 3
\end{aligned}
$$

(In contrast with $1(\mathrm{e})$ and $1(\mathrm{a})$, rotation around the y-axis makes the solid in 2(e) different from 2(a).)

$$
x=\sqrt{a^{2}-y}
$$

$$
(\text { for } 2 \mathrm{a}, \text { set } \mathrm{a}=1)
$$

$x=y$
$($ for 2 c, set $\mathrm{a}=1$)

$x=a+\sqrt{a^{2}-y}$
$($ (for 2 e, set $\mathrm{a}=1$)

$x=y^{2} / a$

$x^{2}=a^{2}\left(1-y^{2} / b^{2}\right)$
f) $x^{2}-2 a x+y=0 \Longrightarrow x=a \pm \sqrt{a^{2}-y}$. Using the method of washers:

$$
\begin{aligned}
\int_{0}^{a^{2}} \pi\left[\left(a+\sqrt{a^{2}-y}\right)^{2}-\left(a-\sqrt{a^{2}-y}\right)^{2}\right] d y & =\int_{0}^{a^{2}} 4 \pi a \sqrt{a^{2}-y} d y \\
& =-\left.(8 / 3) \pi a\left(a^{2}-y\right)^{3 / 2}\right|_{0} ^{1}=8 \pi a^{4} / 3
\end{aligned}
$$

g) Using washers:

$$
\int_{0}^{a} \pi\left(a^{2}-\left(y^{2} / a\right)^{2}\right) d y=\left.\pi\left(a^{2} y-y^{5} / 5 a^{2}\right)\right|_{0} ^{a}=4 \pi a^{3} / 5
$$

h)

$$
\int_{-b}^{b} \pi x^{2} d y=2 \pi \int_{0}^{b} a^{2}\left(1-y^{2} / b^{2}\right) d y=\left.2 \pi\left(a^{2} y-a^{2} y^{3} / 3 b^{2}\right)\right|_{0} ^{b}=4 \pi a^{2} b / 3
$$

(The answer in 2(h) is double the answer in $1(\mathrm{~h})$, with a and b reversed. Can you see why?)

4B-3 Put the pyramid upside-down. By similar triangles, the base of the smaller bottom pyramid has sides of length $(z / h) L$ and $(z / h) M$.

The base of the big pyramid has area $b=L M$; the base of the smaller pyramid forms a cross-sectional slice, and has area

$$
(z / h) L \cdot(z / h) M=(z / h)^{2} L M=(z / h)^{2} b
$$

Therefore, the volume is

$$
\int_{0}^{h}(z / h)^{2} b d z=b z^{3} /\left.3 h^{2}\right|_{0} ^{h}=b h / 3
$$

4B-4 The slice perpendicular to the $x z$-plane are right triangles with base of length x and height $z=2 x$. Therefore the area of a slice is x^{2}. The volume is

$$
\int_{-1}^{1} x^{2} d y=\int_{-1}^{1}\left(1-y^{2}\right) d y=4 / 3
$$

4B-5 One side can be described by $y=\sqrt{3} x$ for $0 \leq x \leq a / 2$.

Therefore, the volume is

$$
2 \int_{0}^{a / 2} \pi y^{2} d x 2 \int_{0}^{a / 2} \pi(\sqrt{3} x)^{2} d x=\pi a^{3} / 4
$$

4B-6 If the hypotenuse of an isoceles right triangle has length h, then its area is $h^{2} / 4$. The endpoints of the slice in the $x y$-plane are $y= \pm \sqrt{a^{2}-x^{2}}$, so $h=$ $2 \sqrt{a^{2}-x^{2}}$. In all the volume is

$$
\int_{-a}^{a}\left(h^{2} / 4\right) d x=\int_{-a}^{a}\left(a^{2}-x^{2}\right) d x=4 a^{3} / 3
$$

4B-7 Solving for x in $y=(x-1)^{2}$ and $y=(x+1)^{2}$ gives the values

$$
x=1 \pm \sqrt{y} \quad \text { and } \quad x=-1 \pm \sqrt{y}
$$

The hard part is deciding which sign of the square root representing the endpoints of the square.

Method 1: The point $(0,1)$ has to be on the two curves. Plug in $y=1$ and $x=0$ to see that the square root must have the opposite sign from 1: $x=1-\sqrt{y}$ and $x=-1+\sqrt{y}$.

Method 2: Look at the picture. $x=1+\sqrt{y}$ is the wrong choice because it is the right half of the parabola with vertex $(1,0)$. We want the left half: $x=1-\sqrt{y}$. Similarly, we want $x=-1+\sqrt{y}$, the right half of the parabola with vertex $(-1,0)$. Hence, the side of the square is the interval $-1+\sqrt{y} \leq x \leq 1-\sqrt{y}$, whose length is $2(1-\sqrt{y})$, and the

$$
\text { Volume }=\int_{0}^{1}\left(2(1-\sqrt{y})^{2} d y=4 \int_{0}^{1}(1-2 \sqrt{y}+y) d y=2 / 3\right.
$$

4C. Volumes by shells

4C-1 a)

$$
\text { Shells: } \quad \int_{b-a}^{b+a}(2 \pi x)(2 y) d x=\int_{b-a}^{b+a} 4 \pi x \sqrt{a^{2}-(x-b)^{2}} d x
$$

b) $(x-b)^{2}=a^{2}-y^{2} \Longrightarrow x=b \pm \sqrt{a^{2}-y^{2}}$

Washers: $\quad \int_{-a}^{a} \pi\left(x_{2}^{2}-x_{1}^{2}\right) d y=\int_{-a}^{a} \pi\left(\left(b+\sqrt{a^{2}-y^{2}}\right)^{2}-\left(b-\sqrt{a^{2}-y^{2}}\right)^{2}\right) d y$

$$
=\pi \int_{-a}^{a} 4 b \sqrt{a^{2}-y^{2}} d y
$$

Shells

Washers
c) $\int_{-a}^{a} \sqrt{a^{2}-y^{2}} d y=\pi a^{2} / 2$, because it's the area of a semicircle of radius a.

$$
\text { Thus }(\mathrm{b}) \Longrightarrow \text { Volume of torus }=2 \pi^{2} a^{2} b
$$

d) $z=x-b, d z=d x$

$$
\int_{b-a}^{b+a} 4 \pi x \sqrt{a^{2}-(x-b)^{2}} d x=\int_{-a}^{a} 4 \pi(z+b) \sqrt{a^{2}-z^{2}} d z=\int_{-a}^{a} 4 \pi b \sqrt{a^{2}-z^{2}} d z
$$

because the part of the integrand with the factor z is odd, and so it integrates to 0 .

4C-2 $\quad \int_{0}^{1} 2 \pi x y d x=\int_{0}^{1} 2 \pi x^{3} d x=\pi / 2$

4C-2 (shells)

4C-3a (shells)

$4 \mathrm{C}-3 \mathrm{~b}$ (discs)
$\mathbf{4 C - 3} \quad$ Shells: $\quad \int_{0}^{1} 2 \pi x(1-y) d x=\int_{0}^{1} 2 \pi x(1-\sqrt{x}) d x=\pi / 5$
Disks: $\quad \int_{0}^{1} \pi x^{2} d y=\int_{0}^{1} \pi y^{4} d y=\pi / 5$
$\mathbf{4 C - 4}$ a) $\int_{0}^{1} 2 \pi y(2 x) d y=4 \pi \int_{0}^{1} y \sqrt{1-y} d y$
b) $\int_{0}^{a^{2}} 2 \pi y(2 x) d y=4 \pi \int_{0}^{a^{2}} y \sqrt{a^{2}-y} d y$
c) $\int_{0}^{1} 2 \pi y(1-y) d y$
d) $\int_{0}^{a} 2 \pi y(a-y) d y$
e) $x^{2}-2 x+y=0 \Longrightarrow x=1 \pm \sqrt{1-y}$.

The interval $1-\sqrt{1-y} \leq x \leq 1+\sqrt{1-y}$ has length $2 \sqrt{1-y}$

$$
\Longrightarrow V=\int_{0}^{1} 2 \pi y(2 \sqrt{1-y}) d y=4 \pi \int_{0}^{1} y \sqrt{1-y} d y
$$

f) $x^{2}-2 a x+y=0 \Longrightarrow x=a \pm \sqrt{a^{2}-y}$.

The interval $a-\sqrt{a^{2}-y} \leq x \leq a+\sqrt{a^{2}-y}$ has length $2 \sqrt{a^{2}-y}$

$$
\Longrightarrow V=\int_{0}^{a^{2}} 2 \pi y\left(2 \sqrt{a^{2}-y} d y=4 \pi \int_{0}^{a^{2}} y \sqrt{a^{2}-y} d y\right.
$$

$x=\sqrt{a^{2}-y} \quad$ (right)

$x=y$
$x=a+\sqrt{a^{2}-y}$
$x=a-\sqrt{a^{2}-y}$
$x=y^{2} / a$
$x=a \sqrt{1-y 2 b^{2}}$
g) $\int_{0}^{a} 2 \pi y\left(a-y^{2} / a\right) d y$
h) $\int_{0}^{b} 2 \pi y x d y=\int_{0}^{b} 2 \pi y\left(a^{2}\left(1-y^{2} / b^{2}\right) d y\right.$
(Why is the lower limit of integration 0 rather than $-b$?)

4 C-5 a) $\int_{0}^{1} 2 \pi x\left(1-x^{2}\right) d x$
c) $\int_{0}^{1} 2 \pi x y d x=\int_{0}^{1} 2 \pi x^{2} d x$
b) $\int_{0}^{a} 2 \pi x\left(a^{2}-x^{2}\right) d x$
d) $\int_{0}^{a} 2 \pi x y d x=\int_{0}^{a} 2 \pi x^{2} d x$
e) $\int_{0}^{2} 2 \pi x y d x=\int_{0}^{2} 2 \pi x\left(2 x-x^{2}\right) d x$
f) $\int_{0}^{2 a} 2 \pi x y d x=\int_{0}^{2 a} 2 \pi x(a x-$

$\left.x^{2}\right) d x$
g) $\int_{0}^{a} 2 \pi x y d x=\int_{0}^{a} 2 \pi x \sqrt{a x} d x$
h) $\int_{0}^{a} 2 \pi x(2 y) d x=\int_{0}^{a} 2 \pi x\left(2 b^{2}\left(1-x^{2} / a^{2}\right)\right) d x$
(Why did y get doubled this time?)

4C-6

$$
\begin{aligned}
\int_{a}^{b} 2 \pi x(2 y) d x & =\int_{a}^{b} 2 \pi x\left(2 \sqrt{b^{2}-x^{2}}\right) d x \\
& =-\left.(4 / 3) \pi\left(b^{2}-x^{2}\right)^{3 / 2}\right|_{a} ^{b}=(4 \pi / 3)\left(b^{2}-a^{2}\right)^{3 / 2}
\end{aligned}
$$

4D. Average value

4D-1 Cross-sectional area at x is $=\pi y^{2}=\pi \cdot\left(x^{2}\right)^{2}=\pi x^{4}$. Therefore,

average cross-sectional area $=\frac{1}{2} \int_{0}^{2} \pi x^{4} d x=\left.\frac{\pi x^{5}}{10}\right|_{0} ^{2}=\frac{16 \pi}{5}$.

4D-2 Average $=\frac{1}{a} \int_{a}^{2 a} \frac{d x}{x}=\left.\frac{1}{a} \ln x\right|_{a} ^{2 a}=\frac{1}{a}(\ln 2 a-\ln a)=\frac{1}{a} \ln \left(\frac{2 a}{a}\right)=\frac{\ln 2}{a}$.

4D-3 Let $s(t)$ be the distance function; then the velocity is $v(t)=s^{\prime}(t)$

Average value of velocity $=\frac{1}{b-a} \int_{a}^{b} s^{\prime}(t) d t=\frac{s(b)-s(a)}{b-a}$ by FT1

$$
=\text { average velocity over time interval }[\mathrm{a}, \mathrm{~b}]
$$

4D-4 By symmetry, we can restrict P to the upper semicircle.

By the law of cosines, we have $|P Q|^{2}=1^{2}+1^{2}-2 \cos \theta$. Thus

$$
\text { average of }|P Q|^{2}=\frac{1}{\pi} \int_{0}^{\pi}(2-2 \cos \theta) d \theta=\frac{1}{\pi}[2 \theta-2 \sin \theta]_{0}^{\pi}=2
$$

(This is the value of $|P Q|^{2}$ when $\theta=\pi / 2$, so the answer is reasonable.))

4D-5 By hypothesis, $g(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$ To express $f(x)$ in terms of $g(x)$, multiply thourgh by x and apply the Sec. Fund. Thm:

$$
\int_{0}^{x} f(t) d t=x g(x) \Rightarrow \quad f(x)=g(x)+x g^{\prime}(x), \text { by FT2.. }
$$

4D-6 Average value of $A(t)=\frac{1}{T} \int_{0}^{T} A_{0} e^{r t} d t=\left.\frac{1}{T} \frac{A_{0}}{r} e^{r t}\right|_{0} ^{T}=\frac{A_{0}}{r T}\left(e^{r T}-1\right)$

If $r T$ is small, we can approximate: $e^{r T} \approx 1+r T+\frac{(r T)^{2}}{2}$, so we get

$$
A(t) \approx \frac{A_{0}}{r T}\left(r T+\frac{(r T)^{2}}{2}\right)=A_{0}\left(1+\frac{r T}{2}\right)
$$

(If $T \approx 0$, at the end of T years the interest added will be $A_{0} r T$; thus the average is approximately what the account grows to in $T / 2$ years, which seems reasonable.)

4D-7 $\frac{1}{b} \int_{0}^{b} x^{2} d x=b^{2} / 3$

4D-8 The average on each side is the same as the average
over all four sides. Thus the average distance is

$$
\frac{1}{a} \int_{-a / 2}^{a / 2} \sqrt{x^{2}+(a / 2)^{2}} d x
$$

Can't be evaluated by a formula until Unit 5. The average of the square of the distance is

$$
\frac{1}{a} \int_{-a / 2}^{a / 2}\left(x^{2}+(a / 2)^{2}\right) d x=\frac{2}{a} \int_{0}^{a / 2}\left(x^{2}+(a / 2)^{2}\right) d x=a^{2} / 3
$$

4D-9 $\frac{1}{\pi / a} \int_{0}^{\pi / a} \sin a x d x-\left.\frac{1}{\pi} \cos (a x)\right|_{0} ^{\pi / a}=2 / \pi$

4D'. Work

4D'-1 According to Hooke's law, we have $F=k x$, where F is the force, x is the displacement (i.e., the added length), and k is the Hooke's law constant for the
spring.
To find k, substitute into Hooke's law: $\quad 2,000=k \cdot(1 / 2) \Rightarrow k=4000$.
To find the work W, we have
$\left.W=\int_{0}^{6} F d x=\int_{0}^{6} 4000 x d x=2000 x^{2}\right]_{0}^{6}=72,000$ inch-pounds $=6,000$ foot-pounds.

4D'-2 Let $W(h)=$ weight of pail and paint at height h.
$W(0)=12, \quad W(30)=10 \Rightarrow W(h)=12-\frac{1}{15} h$, since the pulling and leakage both occur at a constant rate.

$$
\text { work } \left.=\int_{0}^{30} W(h) d h=\int_{0}^{30}\left(12-\frac{h}{15}\right) d h=12 h-\frac{h^{2}}{30}\right]_{0}^{30}=330 \mathrm{ft}-\mathrm{lbs}
$$

4D'-3 Think of the hose as divided into many equal little infinitesimal pieces, of length $d h$, each of which must be hauled up to the top of the building.

The piece at distance h from the top end has weight $2 d h$; to haul it up to the top requires $2 h d h \mathrm{ft}-\mathrm{lbs}$. Adding these up,

$$
\text { total work } \left.=\int_{0}^{50} 2 h d h=h^{2}\right]_{0}^{50}=2500 \mathrm{ft}-\mathrm{lbs}
$$

4D'-4 If they are x units apart, the gravitational force between them is $\frac{g m_{1} m_{2}}{x^{2}}$.
work $\left.=\int_{d}^{n d} \frac{g m_{1} m_{2}}{x^{2}} d x=-\frac{g m_{1} m_{2}}{x}\right]_{d}^{n d}=-g m_{1} m_{2}\left(\frac{1}{n d}-\frac{1}{d}\right)=\frac{g m_{1} m_{2}}{d}\left(\frac{n-1}{n}\right)$.
The limit as $n \rightarrow \infty$ is $\frac{g m_{1} m_{2}}{d}$.

4E. Parametric equations

4E-1 $y-x=t^{2}, y-2 x=-t$. Therefore,

$$
y-x=(y-2 x)^{2} \Longrightarrow y^{2}-4 x y+4 x^{2}-y+x=0 \quad \text { (parabola) }
$$

4E-2 $x^{2}=t^{2}+2+1 / t^{2}$ and $y^{2}=t^{2}-2+1 / t^{2}$. Subtract, getting the hyperbola $x^{2}-y^{2}=4$

4E-3 $(x-1)^{2}+(y-4)^{2}=\sin ^{2} \theta+\cos ^{2} t=1($ circle $)$

4E-4 $1+\tan ^{2} t=\sec ^{2} t \Longrightarrow 1+x^{2}=y^{2}$ (hyperbola)

4E-5 $\quad x=\sin 2 t=2 \sin t \cos t= \pm 2 \sqrt{1-y^{2}} y$. This gives $x^{2}=4 y^{2}-4 y^{4}$.

4E-6 $y^{\prime}=2 x$, so $t=2 x$ and

$$
x=t / 2, \quad y=t^{2} / 4
$$

4E-7 Implicit differentiation gives $2 x+2 y y^{\prime}=0$, so that $y^{\prime}=-x / y$. So the parameter is $t=-x / y$. Substitute $x=-t y$ in $x^{2}+y^{2}=a^{2}$ to get

$$
t^{2} y^{2}+y^{2}=a^{2} \Longrightarrow y^{2}=a^{2} /\left(1+t^{2}\right)
$$

Thus

$$
y=\frac{a}{\sqrt{1+t^{2}}}, \quad x=\frac{-a t}{\sqrt{1+t^{2}}}
$$

For $-\infty<t<\infty$, this parametrization traverses the upper semicircle $y>0$ (going clockwise). One can also get the lower semicircle (also clockwise) by taking the negative square root when solving for y,

$$
y=\frac{-a}{\sqrt{1+t^{2}}}, \quad x=\frac{a t}{\sqrt{1+t^{2}}}
$$

$4 \mathbf{E}-8$ The $\operatorname{tip} Q$ of the hour hand is given in terms of the angle θ by $Q=(\cos \theta, \sin \theta)$ (units are meters).

Next we express θ in terms of the time parameter t (hours). We have

$$
\begin{aligned}
& \theta=\left\{\begin{array}{l}
\pi / 2, t=0 \\
\pi / 3, t=1
\end{array}\right\} \theta \text { decreases linearly with } \mathrm{t} \\
& \Longrightarrow \theta-\frac{\pi}{2}=\frac{\frac{\pi}{3}-\frac{\pi}{2} \cdot(t-0)}{1-0} . \text { Thus we get } \theta=\frac{\pi}{2}-\frac{\pi}{6} t .
\end{aligned}
$$

Finally, for the snail's position P, we have
$P=(t \cos \theta, t \sin \theta)$, where t increases from 0 to 1 . So,

$$
x=t \cos \left(\frac{\pi}{2}-\frac{\pi}{6} t\right)=t \sin \frac{\pi}{6} t, \quad y=t \sin \left(\frac{\pi}{2}-\frac{\pi}{6} t\right)=t \cos \frac{\pi}{6} t
$$

4F. Arclength

4F-1 a) $d s=\sqrt{1+\left(y^{\prime}\right)^{2}} d x=\sqrt{26} d x$. Arclength $=\int_{0}^{1} \sqrt{26} d x=\sqrt{26}$.
b) $d s=\sqrt{1+\left(y^{\prime}\right)^{2}} d x=\sqrt{1+(9 / 4) x} d x$.

Arclength $=\int_{0}^{1} \sqrt{1+(9 / 4) x} d x=\left.(8 / 27)(1+9 x / 4)^{3 / 2}\right|_{0} ^{1}=(8 / 27)\left((13 / 4)^{3 / 2}-1\right)$
c) $y^{\prime}=-x^{-1 / 3}\left(1-x^{2 / 3}\right)^{1 / 2}=-\sqrt{x^{-2 / 3}-1}$. Therefore, $d s=x^{-1 / 3} d x$, and

$$
\text { Arclength }=\int_{0}^{1} x^{-1 / 3} d x=\left.(3 / 2) x^{2 / 3}\right|_{0} ^{1}=3 / 2
$$

d) $y^{\prime}=x\left(2+x^{2}\right)^{1 / 2}$. Therefore, $d s=\sqrt{1+2 x^{2}+x^{4}} d x=\left(1+x^{2}\right) d x$ and

$$
\text { Arclength }=\int_{1}^{2}\left(1+x^{2}\right) d x=x+x^{3} /\left.3\right|_{1} ^{2}=10 / 3
$$

4F-2 $y^{\prime}=\left(e^{x}-e^{-x}\right) / 2$, so the hint says $1+\left(y^{\prime}\right)^{2}=y^{2}$ and $d s=\sqrt{1+\left(y^{\prime}\right)^{2}} d x=$ $y d x$. Thus,

$$
\text { Arclength }=(1 / 2) \int_{0}^{b}\left(e^{x}+e^{-x}\right) d x=\left.(1 / 2)\left(e^{x}-e^{-x}\right)\right|_{0} ^{b}=\left(e^{b}-e^{-b}\right) / 2
$$

4F-3 $y^{\prime}=2 x, \sqrt{1+\left(y^{\prime}\right)^{2}}=\sqrt{1+4 x^{2}}$. Hence, arclength $=\int_{0}^{b} \sqrt{1+4 x^{2}} d x$.
$4 \mathbf{F}-4 \quad d s=\sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t=\sqrt{4 t^{2}+9 t^{4}} d t$. Therefore,

$$
\begin{aligned}
\text { Arclength } & =\int_{0}^{2} \sqrt{4 t^{2}+9 t^{4}} d t=\int_{0}^{2}\left(4+9 t^{2}\right)^{1 / 2} t d t \\
& =\left.(1 / 27)\left(4+9 t^{2}\right)^{3 / 2}\right|_{0} ^{2}=\left(40^{3 / 2}-8\right) / 27
\end{aligned}
$$

4F-5 $\quad d x / d t=1-1 / t^{2}, d y / d t=1+1 / t^{2}$. Thus

$$
\begin{gathered}
d s=\sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t=\sqrt{2+2 / t^{4}} d t \text { and } \\
\text { Arclength }=\int_{1}^{2} \sqrt{2+2 / t^{4}} d t
\end{gathered}
$$

4F-6 a) $d x / d t=1-\cos t, d y / d t=\sin t$.

$$
d s / d t=\sqrt{(d x / d t)^{2}+(d y / d t)^{2}}=\sqrt{2-2 \cos t} \quad(\text { speed of the point })
$$

Forward motion $(d x / d t)$ is largest for t an odd multiple of $\pi(\cos t=-1)$. Forward motion is smallest for t an even multiple of $\pi(\cos t=1)$. (continued \rightarrow)

Remark: The largest forward motion is when the point is at the top of the wheel and the smallest is when the point is at the bottom (since $y=1-\cos t$.)
b) $\int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t=\int_{0}^{2 \pi} 2 \sin (t / 2) d t=-\left.4 \cos (t / 2)\right|_{0} ^{2 \pi}=8$

4F-7 $\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} d t$
$4 \mathbf{F}-\mathbf{8} d x / d t=e^{t}(\cos t-\sin t), d y / d t=e^{t}(\cos t+\sin t)$.
$d s=\sqrt{e^{2 t}(\cos t-\sin t)^{2}+e^{2 t}(\cos t+\sin t)^{2}} d t=e^{t} \sqrt{2 \cos ^{2} t+2 \sin ^{2} t} d t=\sqrt{2} e^{t} d t$
Therefore, the arclength is

$$
\int_{0}^{10} \sqrt{2} e^{t} d t=\sqrt{2}\left(e^{10}-1\right)
$$

4G. Surface Area

4G-1 The curve $y=\sqrt{R^{2}-x^{2}}$ for $a \leq x \leq b$ is revolved around the x-axis.

Since we have $y^{\prime}=-x / \sqrt{R^{2}-x^{2}}$, we get

$$
d s=\sqrt{1+\left(y^{\prime}\right)^{2}} d x=\sqrt{1+x^{2} /\left(R^{2}-x^{2}\right)} d x=\sqrt{R^{2} /\left(R^{2}-x^{2}\right)} d x=(R / y) d x
$$

Therefore, the area element is

$$
d A=2 \pi y d s=2 \pi R d x
$$

and the area is

$$
\int_{a}^{b} 2 \pi R d x=2 \pi R(b-a)
$$

4G-2 Limits are $0 \leq x \leq 1 / 2 . d s=\sqrt{5} d x$, so

$$
d A=2 \pi y d s=2 \pi(1-2 x) \sqrt{5} d x \Longrightarrow A=2 \pi \sqrt{5} \int_{0}^{1 / 2}(1-2 x) d x=\sqrt{5} \pi / 2
$$

4G-3 Limits are $0 \leq y \leq 1 . x=(1-y) / 2, d x / d y=-1 / 2$. Thus

$$
\begin{gathered}
d s=\sqrt{1+(d x / d y)^{2}} d y=\sqrt{5 / 4} d y \\
d A=2 \pi y d s=\pi(1-y)(\sqrt{5} / 2) d x \Longrightarrow \begin{array}{c}
\\
15
\end{array}
\end{gathered}
$$

4G-4 $\quad A=\int 2 \pi y d s=\int_{0}^{4} 2 \pi x^{2} \sqrt{1+4 x^{2}} d x$

4G-5 $\quad x=\sqrt{y}, d x / d y=-1 / 2 \sqrt{y}$, and $d s=\sqrt{1+1 / 4 y} d y$

$$
\begin{aligned}
A & =\int 2 \pi x d s=\int_{0}^{2} 2 \pi \sqrt{y} \sqrt{1+1 / 4 y} d y \\
& =\int_{0}^{2} 2 \pi \sqrt{y+1 / 4} d y \\
& =\left.(4 \pi / 3)(y+1 / 4)^{3 / 2}\right|_{0} ^{2}=(4 \pi / 3)\left((9 / 4)^{3 / 2}-(1 / 4)^{3 / 2}\right) \\
& =13 \pi / 3
\end{aligned}
$$

4G-6 $y=\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} \Longrightarrow y^{\prime}=-x^{-1 / 3}\left(a^{2 / 3}-x^{2 / 3}\right)^{1 / 2}$. Hence

$$
d s=\sqrt{1+x^{-2 / 3}\left(a^{2 / 3}-x^{2 / 3}\right)} d x=a^{1 / 3} x^{-1 / 3} d x
$$

Therefore, (using symmetry on the interval $-a \leq x \leq a$)

$$
\begin{gathered}
y=\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} \\
A=\int 2 \pi y d s=2 \int_{0}^{a} 2 \pi\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} a^{1 / 3} x^{-1 / 3} d x \\
=\left.(4 \pi)(2 / 5)(-3 / 2) a^{1 / 3}\left(a^{2 / 3}-x^{2 / 3}\right)^{5 / 2}\right|_{0} ^{a} \\
=(12 \pi / 5) a^{2}
\end{gathered}
$$

4G-7 a) Top half: $y=\sqrt{a^{2}-(x-b)^{2}}, y^{\prime}=(b-x) / y$. Hence,
$d s=\sqrt{1+(b-x)^{2} / y^{2}} d x=\sqrt{\left(y^{2}+(b-x)^{2}\right) / y^{2}} d x=(a / y) d x$
Since we are only covering the top half we double the integral for area:

$$
A=\int 2 \pi x d s=4 \pi a \int_{b-a}^{b+a} \frac{x d x}{\sqrt{a^{2}-(x-b)^{2}}}
$$

b) We need to rotate two curves $x_{2}=b+\sqrt{a^{2}-y^{2}}$

upper and lower surfaces are symmetrical and equal
and $x_{1}=b-\sqrt{a^{2}-y^{2}}$ around the y-axis. The value

$$
d x_{2} / d y=-\left(d x_{1} / d y\right)=-y / \sqrt{a^{2}-y^{2}}
$$

So in both cases,

$$
d s=\sqrt{1+y^{2} /\left(a^{2}-y^{2}\right)} d y=\left(a / \sqrt{a^{2}-y^{2}}\right) d y
$$

The integral is

inner and outer surfaces are not symmetrical and not equal

$$
A=\int 2 \pi x_{2} d s+\int 2 \pi x_{1} d s=\int_{-a}^{a} 2 \pi\left(x_{1}+x_{2}\right) \frac{a d y}{\sqrt{a^{2}-y^{2}}}
$$

But $x_{1}+x_{2}=2 b$, so

$$
A=4 \pi a b \int_{-a}^{a} \frac{d y}{\sqrt{a^{2}-y^{2}}}
$$

c) Substitute $y=a \sin \theta, d y=a \cos \theta d \theta$ to get

$$
A=4 \pi a b \int_{-\pi / 2}^{\pi / 2} \frac{a \cos \theta d \theta}{a \cos \theta}=4 \pi a b \int_{-\pi / 2}^{\pi / 2} d \theta=4 \pi^{2} a b
$$

4H. Polar coordinate graphs

4H-1 We give the polar coordinates in the form (r, θ) :
a) $(3, \pi / 2)$ b) $(2, \pi)$ c) $(2, \pi / 3)$ d) $(2 \sqrt{2}, 3 \pi / 4)$
e) $(\sqrt{2},-\pi / 4$ or $7 \pi /$ fil) $)(2,-\pi / 2$ or $3 \pi / 2)$
g) $(2,-\pi / 6$ or $11 \pi / 6 n)(2 \sqrt{2},-3 \pi / 4$ or $5 \pi / 4)$

4H-2 a) (i) $(x-a)^{2}+y^{2}=a^{2} \Rightarrow x^{2}-2 a x+y^{2}=0 \Rightarrow r^{2}-2 a r \cos \theta=0 \Rightarrow$ $r=2 a \cos \theta$.
(ii) $\angle O P Q=90^{\circ}$, since it is an angle inscribed in a semicircle.

In the right triangle $\mathrm{OPQ},|O P|=|O Q| \cos \theta$, i.e., $r=2 a \cos \theta$.
b) (i) Analogous to $4 \mathrm{H}-2 \mathrm{a}(\mathrm{i})$; ans: $r=2 a \sin \theta$.
(ii) analogous to $4 \mathrm{H}-2 \mathrm{a}(\mathrm{ii})$; note that $\angle O Q P=\theta$, since both angles are complements of $\angle P O Q$.
c) (i) $O Q P$ is a right triangle, $|O P|=r$, and $\angle P O Q=\alpha-\theta$.

The polar equation is $\quad r \cos (\alpha-\theta)=a, \quad$ or in expanded form,

$$
\begin{gathered}
r(\cos \alpha \cos \theta+\sin \alpha \sin \theta)=a \quad, \text { or finally } \\
\frac{x}{A}+\frac{y}{B}=1,
\end{gathered}
$$

since from the right triangles $O A Q$ and $O B Q$, we have $\cos \alpha=\frac{a}{A}, \sin \alpha=$ $\cos B O Q=\frac{a}{B}$.
d) Since $|O Q|=\sin \theta$, we have:
if P is above the x-axis, $\sin \theta>0, O P|=|O Q|-|Q R|$, or $r=a-a \sin \theta$;
if P is below the x-axis, $\sin \theta<0, O P|=|O Q|+|Q R|$, or $\quad r=a+a| \sin \theta \mid=$ $a-a \sin \theta$. Thus the equation is $r=a(1-\sin \theta)$.
e) Briefly, when $P=(0,0),|P Q||P R|=a \cdot a=a^{2}$, the constant.

Using the law of cosines,
$|P R|^{2}=r^{2}+a^{2}-2 a r \cos \theta ;$
$|P Q|^{2}=r^{2}+a^{2}-2 a r \cos (\pi-\theta)=r^{2}+a^{2}+2 a r \cos \theta$
Therefore
$|P Q|^{2}|P R|^{2}=\left(r^{2}+a^{2}\right)^{2}-(2 a r \cos \theta)^{2}=\left(a^{2}\right)^{2}$
which simplifies to

$$
r^{2}=2 a^{2} \cos 2 \theta
$$

4H-3 a) $r=\sec \theta \Longrightarrow r \cos \theta=1 \Longrightarrow x=1$
b) $r=2 a \cos \theta \Longrightarrow r^{2}=r \cdot 2 a \cos \theta=2 a x \Longrightarrow x^{2}+y^{2}=2 a x$
c) $r=(a+b \cos \theta)$ (This figure is a cardiod for $a=b$, a limaçon with a loop for $0<a<b$, and a limaçon without a loop for $a>b>0$.)

$$
r^{2}=a r+b r \cdot \cos \theta=a r+b x \Longrightarrow x^{2}+y^{2}=a \sqrt{x^{2}+y^{2}}+b x
$$

8a

8 b

8c

8d
(d) $\quad r=a /(b+c \cos \theta) \quad \Longrightarrow \quad r(b+c \cos \theta)=a \quad \Longrightarrow \quad r b+c x=a$

$$
\Longrightarrow \quad r b=a-c x \quad \Longrightarrow \quad r^{2} b^{2}=a^{2}-2 a c x+c^{2} x^{2}
$$

$$
\Longrightarrow \quad a^{2}-2 a c x+\left(c^{2}-b^{2}\right) x^{2}-b^{2} y^{2}=0
$$

(e) $\quad r=a \sin (2 \theta) \quad \Longrightarrow \quad r=2 a \sin \theta \cos \theta=2 a x y / r^{2}$

$$
\Longrightarrow \quad r^{3}=2 a x y \quad \Longrightarrow \quad\left(x^{2}+y^{2}\right)^{3 / 2}=2 a x y
$$

f) $r=a \cos (2 \theta)=a\left(2 \cos ^{2} \theta-1\right)=a\left(\frac{2 x^{2}}{x^{2}+y^{2}}-1\right) \Longrightarrow\left(x^{2}+y^{2}\right)^{3 / 2}=$ $a\left(x^{2}-y^{2}\right)$
g) $r^{2}=a^{2} \sin (2 \theta)=2 a^{2} \sin \theta \cos \theta=2 a^{2} \frac{x y}{r^{2}} \Longrightarrow r^{4}=2 a^{2} x y \Longrightarrow\left(x^{2}+y^{2}\right)^{2}=$ 2axy
h) $r^{2}=a^{2} \cos (2 \theta)=a^{2}\left(\frac{2 x^{2}}{x^{2}+y^{2}}-1\right) \Longrightarrow\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$
i) $r=e^{a \theta} \Longrightarrow \ln r=a \theta \Longrightarrow \ln \sqrt{x^{2}+y^{2}}=a \tan ^{-1} \frac{y}{x}$

4I. Area and arclength in polar coordinates

4I-1 $\sqrt{(d r / d \theta)^{2}+r^{2}} d \theta$
a) $\sec ^{2} \theta d \theta$
b) $2 a d \theta$
c) $\sqrt{a^{2}+b^{2}+2 a b \cos \theta} d \theta$
d) $\frac{a \sqrt{b^{2}+c^{2}+2 b c \cos \theta}}{(b+c \cos \theta)^{2}} d \theta$
e) $a \sqrt{4 \cos ^{2}(2 \theta)+\sin ^{2}(2 \theta)} d \theta$
f) $a \sqrt{4 \sin ^{2}(2 \theta)+\cos ^{2}(2 \theta)} d \theta$
g) Use implicit differentiation:

$$
2 r r^{\prime}=2 a^{2} \cos (2 \theta) \Longrightarrow r^{\prime}=a^{2} \cos (2 \theta) / r \Longrightarrow\left(r^{\prime}\right)^{2}=a^{2} \cos ^{2}(2 \theta) / \sin (2 \theta)
$$

Hence, using a common denominator and $\cos ^{2}+\sin ^{2}=1$,

$$
d s=\sqrt{a^{2} \cos ^{2}(2 \theta) / \sin (2 \theta)+a^{2} \sin (2 \theta)} d \theta=\frac{a}{\sqrt{\sin (2 \theta)}} d \theta
$$

h) This is similar to (g):

$$
d s=\frac{a}{\sqrt{\cos (2 \theta)}} d \theta
$$

i) $\sqrt{1+a^{2}} e^{a \theta} d \theta$

4I-2 $d A=\left(r^{2} / 2\right) d \theta$. The main difficulty is to decide on the endpoints of integration. Endpoints are successive times when $r=0$.

$$
\begin{gathered}
\cos (3 \theta)=0 \Longrightarrow 3 \theta=\pi / 2+k \pi \Longrightarrow \theta=\pi / 6+k \pi / 3, \quad k \text { an integer. } \\
\text { Thus, } \quad A=\int_{-\pi / 6}^{\pi / 6}\left(a^{2} \cos ^{2}(3 \theta) / 2\right) d \theta=a^{2} \int_{0}^{\pi / 6} \cos ^{2}(3 \theta) d \theta
\end{gathered}
$$

(Stop here in Unit 4. Evaluated in Unit 5.)

4I-3 $\quad A=\int\left(r^{2} / 2\right) d \theta=\int_{0}^{\pi}\left(e^{6 \theta} / 2\right) d \theta=\left.(1 / 12) e^{6 \theta}\right|_{0} ^{\pi}=\left(e^{6 \pi}-1\right) / 12$

three-leaf rose
three empty sectors

4I-4 Endpoints are successive time when $r=0$.

$$
\sin (2 \theta)=0 \Longrightarrow 2 \theta=k \pi, \quad k \text { an integer. }
$$

Thus, $A=\int\left(r^{2} / 2\right) d \theta=\int_{0}^{\pi / 2}\left(a^{2} / 2\right) \sin (2 \theta) d \theta=-\left.\left(a^{2} / 4\right) \cos (2 \theta)\right|_{0} ^{\pi / 2}=a^{2} / 2$.

4I-5 $r=2 a \cos \theta, d s=2 a d \theta,-\pi / 2<\theta<\pi / 2$. (The range was chosen carefully so that $r>0$.) Total length of the circle is $2 \pi a$. Since the upper and lower semicircles are symmetric, it suffices to calculate the average over the upper semicircle:

$$
\frac{1}{\pi a} \int_{0}^{\pi / 2} 2 a \cos \theta(2 a) d \theta=\left.\frac{4 a}{\pi} \sin \theta\right|_{0} ^{\pi / 2}=\frac{4 a}{\pi}
$$

4I-6 a) Since the upper and lower halves of the cardiod are symmetric, it suffices to calculate the average distance to the x-axis just for a point on the upper half. We have $r=a(1-\cos \theta)$, and the distance to the x-axis is $r \sin \theta$, so

$$
\frac{1}{\pi} \int_{0}^{\pi} r \sin \theta d \theta=\frac{1}{\pi} \int_{0}^{\pi} a(1-\cos \theta) \sin \theta d \theta=\left.\frac{a}{2 \pi}(1-\cos \theta)^{2}\right|_{0} ^{\pi}=\frac{2 a}{\pi}
$$

(b) $\quad d s=\sqrt{(d r / d \theta)^{2}+r^{2}} d \theta=a \sqrt{(1-\cos \theta)^{2}+\sin ^{2} \theta} d \theta$

$$
=a \sqrt{2-2 \cos \theta} d \theta=2 a \sin (\theta / 2) d \theta, \quad \text { using the half angle formula. }
$$

$$
\text { arclength }=\int_{0}^{2 \pi} 2 a \sin (2 \theta) d \theta=-\left.4 a \cos (\theta / 2)\right|_{0} ^{2 \pi}=8 a
$$

For the average, don't use the half-angle version of the formula for $d s$, and use the interval $-\pi<\theta<\pi$, where $\sin \theta$ is odd:

$$
\begin{aligned}
\text { Average } & =\frac{1}{8 a} \int_{-\pi}^{\pi}|r \sin \theta| a \sqrt{2-2 \cos \theta} d \theta=\frac{1}{8 a} \int_{-\pi}^{\pi}|\sin \theta| \sqrt{2} a^{2}(1-\cos \theta)^{3 / 2} d \theta \\
& =\frac{\sqrt{2} a}{4} \int_{0}^{\pi}(1-\cos \theta)^{3 / 2} \sin \theta d \theta=\left.\frac{\sqrt{2} a}{10}(1-\cos \theta)^{5 / 2}\right|_{0} ^{\pi}=\frac{4}{5} a
\end{aligned}
$$

4I-7 $d x=-a \sin \theta d \theta$. So the semicircle $y>0$ has area

$$
\int_{-a}^{a} y d x=\int_{\pi}^{0} a \sin \theta(-a \sin \theta) d \theta=a^{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta
$$

But

$$
\int_{0}^{\pi} \sin ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{\pi}(1-\cos (2 \theta) d \theta=\pi / 2
$$

So the area is $\pi a^{2} / 2$ as it should be for a semicircle.

Arclength: $d s^{2}=d x^{2}+d y^{2}$

$$
\begin{aligned}
& \Longrightarrow(d s)^{2}=(-a \sin \theta d \theta)^{2}+(a \cos \theta d \theta)^{2}=a^{2}\left(\sin ^{2} d \theta+\cos ^{2} d \theta\right)(d \theta)^{2} \\
& \Longrightarrow d s=a d \theta \text { (obvious from picture). }
\end{aligned}
$$

$$
\int d s=\int_{0}^{2 \pi} a d \theta=2 \pi a
$$

4J. Other applications

4J-1 Divide the water in the hole into n equal circular discs of thickness Δy. Volume of each disc: $\pi\left(\frac{1}{2}\right)^{2} \Delta y$
Energy to raise the disc of water at depth y_{i} to surface: $\frac{\pi}{4} k y_{i} \Delta y$.
Adding up the energies for the different discs, and passing to the limit,

$$
\left.E=\lim _{n \rightarrow \infty} \sum_{1}^{n} \frac{\pi}{4} k y_{i} \Delta y=\int_{0}^{100} \frac{\pi}{4} k y d y=\frac{\pi k}{4} \frac{y^{2}}{2}\right]_{0}^{100}=\frac{\pi k 10^{4}}{8}
$$

4J-2 Divide the hour into n equal small time intervals Δt.
At time $t_{i}, i=1, \ldots, n$, there are $x_{0} e^{-k t_{i}}$ grams of material, producing approximately $r x_{0} e^{-k t_{i}} \Delta t$ radiation units over the time interval $\left[t_{i}, t_{i}+\Delta t\right]$.

Adding and passing to the limit,

$$
\left.R=\lim _{n \rightarrow \infty} \sum_{1}^{n} r x_{0} e^{-k t_{i}} \Delta t=\int_{0}^{60} r x_{0} e^{-k t} d t=r x_{0} \frac{e^{-k t}}{-k}\right]_{0}^{60}=\frac{r x_{0}}{k}\left(1-e^{-60 k}\right)
$$

4J-3 Divide up the pool into n thin concentric cylindrical shells, of radius r_{i}, $i=1, \ldots, n$, and thickness Δr.

The volume of the i-th shell is approximately $2 \pi r_{i} D \Delta r$.
The amount of chemical in the i-th shell is approximately $\frac{k}{1+r_{i}^{2}} 2 \pi r_{i} D \Delta r$.
Adding, and passing to the limit,

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \sum_{1}^{n} \frac{k}{1+r_{i}^{2}} 2 \pi r_{i} D \Delta r=\int_{0}^{R} 2 \pi k D \frac{r}{1+r^{2}} d r \\
& \left.=\pi k D \ln \left(1+r^{2}\right)\right]_{0}^{R}=\pi k D \ln \left(1+R^{2}\right) \mathrm{gms}
\end{aligned}
$$

4J-4 Divide the time interval into n equal small intervals of length Δt by the points $t_{i}, i=1, \ldots, n$.

The approximate number of heating units required to maintain the temperature at 75° over the time interval $\left[t_{i}, t_{i}+\Delta t\right]$: is

$$
\left[\begin{array}{c}
\left.75-10\left(6-\cos \frac{\pi t_{i}}{12}\right)\right] \cdot k \Delta t . \\
23
\end{array}\right.
$$

Adding over the time intervals and passing to the limit:

$$
\begin{aligned}
\text { total heat } & =\lim _{n \rightarrow \infty} \sum_{1}^{n}\left[75-10\left(6-\cos \frac{\pi t_{i}}{12}\right)\right] \cdot k \Delta t \\
& =\int_{0}^{24} k\left[75-10\left(6-\cos \frac{\pi t}{12}\right)\right] d t \\
& =\int_{0}^{24} k\left(15+10 \cos \frac{\pi t}{12}\right) d t=k\left[15 t+\frac{120}{\pi} \sin \frac{\pi t}{12}\right]_{0}^{24}=360 k .
\end{aligned}
$$

4J-5 Divide the month into n equal intervals of length Δt by the points $t_{i}, i=$ $1, \ldots, n$.

Over the time interval $\left[t_{i} \cdot t_{i}+\Delta t\right]$, the number of units produced is about $(10+$ $\left.t_{i}\right) \Delta t$.

The cost of holding these in inventory until the end of the month is $c(30-$ $\left.t_{i}\right)\left(10+t_{i}\right) \Delta t$.

Adding and passing to the limit,

$$
\begin{aligned}
\text { total cost } & =\lim _{n \rightarrow \infty} \sum_{1}^{n} c\left(30-t_{i}\right)\left(10+t_{i}\right) \Delta t \\
& =\int_{0}^{30} c(30-t)(10+t) d t=c\left[300 t+10 t^{2}-\frac{t^{3}}{3}\right]_{0}^{30}=9000 c
\end{aligned}
$$

4J-6 Divide the water in the tank into thin horizontal slices of width $d y$.
If the slice is at height y above the center of the tank, its radius is $\sqrt{r^{2}-y^{2}}$. This formula for the radius of the slice is correct even if $y<0$ - i.e., the slice is below the center of the tank - as long as $-r<y<r$, so that there really is a slice at that height.

Volume of water in the slice $=\pi\left(r^{2}-y^{2}\right) d y$
Weight of water in the slice $=\pi w\left(r^{2}-y^{2}\right) d y$
Work to lift this slice from the ground to the height $h+y=\pi w\left(r^{2}-y^{2}\right) d y(h+y)$.

$$
\begin{aligned}
\text { Total work } & =\int_{-r}^{r} \pi w\left(r^{2}-y^{2}\right)(h+y) d y \\
& =\pi w \int_{-r}^{r}\left(r^{2} h+r^{2} y-h y^{2}-y^{3}\right) \\
& =\pi w\left[r^{2} h y+\frac{r^{2} y^{2}}{2}-\frac{h y^{3}}{3}-\frac{y^{4}}{4}\right]_{-r}^{r}
\end{aligned}
$$

In this last line, the even powers of y have the same value at $-r$ and r, so contribute 0 when it is evaluated; we get therefore

$$
=\pi w h\left[r^{2} y-\frac{y^{3}}{3}\right]_{-r}^{r}=2 \pi w h\left(r^{3}-\frac{r^{3}}{3}\right)=\frac{4}{3} \pi w h r^{3} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

