Integration by Change of Variables

Use a change of variables to compute the following integrals. Change both the variable and the limits of substitution.
a) $\int_{0}^{4} \sqrt{3 x+4} d x$
b) $\int_{1}^{3} \frac{x}{x^{2}+1} d x$
c) $\int_{0}^{\pi / 2} \sin ^{5} x \cos x d x$

Solution

a) $\int_{0}^{4} \sqrt{3 x+4} d x$

The integrand of $\int_{0}^{4} \sqrt{3 x+4} d x$ consists of a (relatively complicated) square root function with a simple expression inside it. Expressions used as input to complicated functions are good candidates for substitution; if we let $u=$ $3 x+4$ then $d u=3 x d x$ and $d x=\frac{1}{3} d u$. When $x=0, u=4$ and when $x=4$, $u=16$.

We now know enough to rewrite the integrand and limits of integration in terms of u, after which we can complete the integral.

$$
\begin{aligned}
\int_{x=0}^{x=4} \sqrt{3 x+4} d x & =\int_{u=4}^{u=16} \sqrt{u} \frac{1}{3} d u \\
& =\frac{1}{3} \int_{4}^{16} u^{1 / 2} d u \\
& =\frac{1}{3}\left[\frac{2}{3} u^{3 / 2}\right]_{4}^{16} \\
& =\frac{2}{9}\left(16^{3 / 2}-4^{3 / 2}\right) \\
& =\frac{2}{9}(64-8) \\
& =\frac{112}{9} \approx 12
\end{aligned}
$$

We can see from a rough graph of the function that the value of the integral must be between 8 and 16 , so this is a reasonable answer.
b) $\int_{1}^{3} \frac{x}{x^{2}+1} d x$

In this example, the most complicated operation is division by $x^{2}+1$. We'll try the substitution $u=x^{2}+1$:

$$
u=x^{2}+1, \quad d u=2 x d x, \quad x d x=\frac{1}{2} d u
$$

When $x=1, u=2$. When $x=3, u=10$.

$$
\begin{aligned}
\int_{1}^{3} \frac{x}{x^{2}+1} d x & =\int_{x=1}^{x=3} \frac{1}{x^{2}+1} \cdot x d x \\
& =\int_{u=2}^{u=10} \frac{1}{u} \frac{1}{2} d u \\
& =\left.\frac{1}{2} \ln (u)\right|_{u=2} ^{u=10} \\
& =\frac{1}{2}(\ln (10)-\ln (2)) \\
& =\frac{1}{2} \ln \left(\frac{10}{2}\right)=\ln (\sqrt{5}) \approx 1
\end{aligned}
$$

This answer is not easy to check, but by using an electronic graphing tool we can confirm that it is approximately correct.
c) $\int_{0}^{\pi / 2} \sin ^{5} x \cos x d x$

Although the sine and cosine functions may be the most complicated part of this problem, performing the substitution $u=x$ does not help us integrate this expression. We shift our focus to the next most complicated operation - exponentiation.

Let $u=\sin (x)$. Then $d u=\cos (x) d x$ and when $x=0, u=0$; when $x=\pi / 2$, $u=1$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{5} x \cos x d x & =\int_{x=0}^{x=\pi / 2}(\sin x)^{5} \cdot \cos x d x \\
& =\int_{0}^{1} u^{5} d u \\
& =\left.\frac{1}{6} u^{6}\right|_{0} ^{1} \\
& =\left(\frac{1}{6} \cdot 1^{6}-\frac{1}{6} \cdot 0^{6}\right) \\
& =\frac{1}{6}
\end{aligned}
$$

Again the answer is hard to check without graphing. It seems reasonable given the fact that $0 \leq \sin x \leq 1$ on the interval in question.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

