Antiderivatives of $\sec ^{2} x$ and $\frac{1}{\sqrt{1-x^{2}}}$
Example: $\int \sec ^{2} x d x$
Searching for antiderivatives will help you remember the specific formulas for derivatives. In this case, you need to remember that $\frac{d}{d x} \tan x=\sec ^{2} x$.

$$
\int \sec ^{2} x d x=\tan x+c
$$

Example: $\int \frac{1}{\sqrt{1-x^{2}}} d x$
An alternate way to write this integral is $\int \frac{d x}{\sqrt{1-x^{2}}}$. This is consistent with the idea that $d x$ is an infinitesimal quantity which can be treated like any other number.

We remember $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$ and conclude that:

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+c .
$$

Example: $\int \frac{d x}{1+x^{2}}$

$$
\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+c
$$

When looking for antiderivatives, you'll spend a lot of time thinking about derivatives. For a little while you may get the two mixed up and differentiate where you were meant to integrate, or vice-versa. With practice, this problem goes away.

Here is a list of the antiderivatives presented in this lecture:

1. $\int \sin x d x=-\cos x+c \quad$ where c is any constant.
2. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad$ for $n \neq-1$.
3. $\int \frac{d x}{x}=\ln |x|+c \quad$ (This takes care of the exceptional case $n=-1$ in 2.)
4. $\int \sec ^{2} x d x=\tan x+c$.
5. $\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+c \quad$ (where $\sin ^{-1} x$ denotes "inverse sine" or arcsin, and not $\frac{1}{\sin x}$.)
6. $\int \frac{d x}{1+x^{2}}=\tan ^{-1}(x)+c$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

