Power Series Expansion of the Error Function

Several times in this course we've seen the error function:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

(The factor of $\frac{2}{\sqrt{\pi}}$ guarantees that $\lim _{x \rightarrow \infty} \operatorname{erf}(x)=1$.) This function is very important in probability theory, but we don't have a conventional algebraic description of it.

Because we can integrate power series and know that:

$$
e^{-t^{2}}=1-t^{2}+\frac{t^{4}}{2!}-\frac{t^{6}}{3!}+\cdots \quad(R=\infty)
$$

we can now find a power series expansion for the error function.

$$
\begin{aligned}
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \\
& =\frac{2}{\sqrt{\pi}} \int_{0}^{x}\left(1-t^{2}+\frac{t^{4}}{2!}-\frac{t^{6}}{3!}+\cdots\right) d t \\
& =\frac{2}{\sqrt{\pi}}\left[t-\frac{t^{3}}{3}+\frac{t^{5}}{5 \cdot 2!}-\frac{t^{7}}{7 \cdot 3!}+\cdots\right]_{0}^{x} \\
& =\frac{2}{\sqrt{\pi}}\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}-\frac{x^{7}}{7 \cdot 3!}+\cdots\right)
\end{aligned}
$$

To get this to look exactly like a power series we would distribute the factor of $\frac{2}{\sqrt{\pi}}$ across the sum, multiplying it by each term of the series. However, that's not strictly necessary.

This turns out to be a very good way to compute the value of the error function; your calculator probably uses this method.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

