Limits and Discontinuity

For which of the following should one use a one-sided limit? In each case, evaluate the one- or two-sided limit.

1. $\lim _{x \rightarrow 0} \sqrt{x}$
2. $\lim _{x \rightarrow-1} \frac{1}{x+1}$
3. $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{4}}$
4. $\lim _{x \rightarrow 0}|\sin x|$
5. $\lim _{x \rightarrow 0} \frac{|x|}{x}$

Solutions

1. $\lim _{x \rightarrow 0} \sqrt{x}$

The function $f(x)=\sqrt{x}$ is only defined for positive values of x, so we must use the one sided right hand limit here. Some work with a calculator or a graph quickly reveals that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.
2. $\lim _{x \rightarrow-1} \frac{1}{x+1}$

The value of $\frac{1}{x+1}$ increases without bound as x approaches -1 and the value of the denominator approaches 0 . For $x<-1$ the expression takes on large, negative values and when $x>-1$ its value is large and positive so the left hand limit differs from the right hand limit and we are forced to use one-sided limits:

$$
\lim _{x \rightarrow-1^{-}} \frac{1}{x+1}=-\infty \quad \lim _{x \rightarrow-1^{+}} \frac{1}{x+1}=\infty
$$

3. $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{4}}$

Once again the value of the expression increases without bound, but in this case its value is always positive. We can say that $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{4}}=\infty$.
4. $\lim _{x \rightarrow 0}|\sin x|$

Here,

$$
\lim _{x \rightarrow 0^{+}}|\sin x|=\lim _{x \rightarrow 0^{-}}|\sin x|=0
$$

so there is no need to use the one-sided limit.
5. $\lim _{x \rightarrow 0} \frac{|x|}{x}$

A one-sided limit is necessary because:

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

