
� � 

When does a function equal its Taylor series?


We have computed the Taylor series for a differentiable function, and earlier in the course, we 
explored how to use their partial sums, i.e. Taylor polynomials, to approximate the function. So 
we know that the Taylor series can be quite useful. But we haven’t addressed the question of when 
a function is equal to its Taylor series. We do this now. 

Recall that when we write down an infinite series with upper bound “∞,” we mean the following: 

∞ �� N

an = lim an 
n=0 

N→∞ 
n=0 

In the context of Taylor series for a function f , this means that the Taylor series Tf (x) is expressible 
as a limit of Taylor polynomials PN (x) as N →∞. That is, the notation 

Tf (x) = 
∞ f (n)(c)

(x − c)n means Tf (x) = lim 
N f (n)(c)

(x − c)n = lim PN (x), 
n=0 

n! N→∞ 
n=0 

n! N →∞ 

where PN (x) is the N -th degree Taylor polynomial to f(x) at x = c. 

Hence f(x) will equal T (x) provided 

f(x) − lim PN (x) = lim (f(x) − PN (x)) = 0. 
N→∞ N→∞ 

For each N , the function (f(x) − PN (x)) is often called the “remainder” (i.e., what remains after 
taking the N -th Taylor polynomial from f) and denoted RN (x). Thus we must find all x for which 

lim RN (x) = 0. 
N→∞ 

A very useful bound on RN (x) is given by Taylor’s inequality: 

Taylor’s Inequality. If |f (N+1)(x)| ≤ B for all x in the interval [c − d, c + d], then the remainder 
RN (x) (for the Taylor polynomial to f(x) at x = c) satisfies the inequality 

|RN (x)| ≤ 
(N

B 
+ 1)!

|x − c|N+1 for all x in [c − d, c + d]. 

If the right-hand side of Taylor’s inequality goes to 0 as N → ∞, then the remainder must go 
to 0 as well, and hence for those x values, the function matches its Taylor series. 

Question: Use Taylor’s inequality to show that ex converges to its Taylor series at 0 for all real x. 

Solution: 

We jump straight in and use Taylor’s inequality to try to show that the right-hand side of the 
x xinequality goes to 0 when we take the limit as N →∞. The (n + 1)-th derivative of e is just e , 

which is an increasing function. So on any interval [−d, d], we immediately obtain the bound: 

|f (N+1)(x)| ≤ e d for all x in [−d, d] 



� 

which is, in particular, independent of N . Now taking limits of both sides of Taylor’s inequality 
gives: 

d 

lim RN (x) lim 
e N+1 for all x in [−d, d]. 

N→∞ 
| | ≤ 

N→∞ (N + 1)!
|x|

Now analyzing the right-hand side of this inequality, 

lim 
ed

N+1 = e d lim 
|x|N+1 

d lim 
dN+1 

= 0 for all x in [−d, d].
N→∞ (N + 1)!

|x|
N→∞ (N + 1)! 

≤ e 
N→∞ (N + 1)! 

because (N + 1)! grows much faster than dN+1 . 

We’ve now shown that given ANY positive number d, RN (x) 0 as N →∞ for all x in [−d, d].→ 
xSince d was arbitrary, we see that RN (x) 0 for any real x, and hence e is equal to its Taylor →

series at 0 for all x. That is, 
n∞ x

e x = . 
n! 

n=0 

In particular, we have a rather elegant description of e as 

1 1 1 
e = 1 + + + +

2! 3! 4! 
· · · 

which can be used to calculate approximations to e which are accurate to arbitrarily many decimal 
places. 

These are difficult questions, but now that you’ve seen the worked example for ex, try to do the 
same for the Taylor series of either sin(x) or cos(x) at 0. (Hint: To bound the size of the derivatives 
of sine and cosine, use the fact that their range is [−1, 1].) 
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