Complete the Square

Compute the integral $\int \frac{d x}{\sqrt{2 x-x^{2}}}$ by completing the square.

Solution

We wish to transform the expression $2 x-x^{2}$ inside the square root into a form that is on our list of common trig substitutions. The subtraction of x^{2} here suggests that we're aiming for an expression comparable to $\sqrt{b^{2}-x^{2}}$.

We can now look up a formula for completing the square, recognize that $2 x-x^{2}$ is part of $-1+2 x-x^{2}=-(x-1)^{2}$, or solve the following equation for a and c :

$$
\begin{aligned}
2 x-x^{2} & =c-(x+a)^{2} \\
-x^{2}+2 x & =c-\left(x^{2}+2 a x+a^{2}\right) \\
-x^{2}+2 x & =-x^{2}-2 a x+c-a^{2}
\end{aligned}
$$

Equating like terms we get:

$$
\begin{aligned}
2 x=-2 a x & \Longrightarrow a=-1 \\
0=c-a^{2} & \Longrightarrow c=1 .
\end{aligned}
$$

In other words, $2 x-x^{2}=1-(x-1)^{2}$.
We can now set up our integral, which will contain the expression $\sqrt{1-(x-1)^{2}}$. Our summary of trig substitutions suggests substituting $u=b \sin \theta$ if the expression $\sqrt{b^{2}-u^{2}}$ appears in an integral, so we will substitute:

$$
\begin{aligned}
x-1=\sin \theta, & d x=\cos \theta d \theta \\
\int \frac{d x}{\sqrt{2 x-x^{2}}} & =\int \frac{d x}{\sqrt{1-(x-1)^{2}}} \\
& =\int \frac{\cos \theta d \theta}{\sqrt{1-\sin ^{2} \theta}} \\
& =\int \frac{\cos \theta d \theta}{\cos \theta} \\
& =\int d \theta \\
& =\theta+c \\
& =\arcsin (x-1)+c
\end{aligned}
$$

If we know $\frac{d}{d x} \arcsin v=\frac{1}{\sqrt{1-v^{2}}}$, this answer is easy to check.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

