Quotient Rule Practice

Find the derivatives of the following rational functions.
a) $\frac{x^{2}}{x+1}$
b) $\frac{x^{4}+1}{x^{2}}$
c) $\frac{\sin (x)}{x}$

Solution

a) $\frac{x^{2}}{x+1}$

The quotient rule tells us that if $u(x)$ and $v(x)$ are differentiable functions, and $v(x)$ is non-zero, then:

$$
\left(\frac{u(x)}{v(x)}\right)^{\prime}=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{(v(x))^{2}}
$$

In this problem $u=x^{2}$ and $v=x+1$, so $u^{\prime}=2 x$ and $v^{\prime}=1$. Applying the quotient rule, we see that:

$$
\begin{aligned}
\left(\frac{x^{2}}{x+1}\right)^{\prime} & =\frac{2 x \cdot(x+1)-x^{2} \cdot 1}{(x+1)^{2}} \\
& =\frac{2 x^{2}+2 x-x^{2}}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x}{(x+1)^{2}} .
\end{aligned}
$$

b) $\frac{x^{4}+1}{x^{2}}$

Here $u(x)=x^{4}+1, u^{\prime}(x)=4 x^{3}, v(x)=x^{2}$ and $v^{\prime}(x)=2 x$. The quotient rule tells us that:

$$
\begin{aligned}
\left(\frac{x^{4}+1}{x^{2}}\right)^{\prime} & =\frac{4 x^{3} \cdot x^{2}-\left(x^{4}+1\right) \cdot 2 x}{\left(x^{2}\right)^{2}} \\
& =\frac{4 x^{5}-2 x^{5}-2 x}{x^{4}} \\
& =\frac{2 x^{4}-2}{x^{3}}
\end{aligned}
$$

c) $\frac{\sin (x)}{x}$

The derivative of $\sin (x)$ is $\cos (x)$ and the derivative of x is 1 , so the quotient rule tells us that:

$$
\begin{aligned}
\left(\frac{\sin (x)}{x}\right)^{\prime} & =\frac{(\cos (x)) \cdot x-(\sin (x)) \cdot 1}{x^{2}} \\
& =\frac{x \cos (x)-\sin (x)}{x^{2}}
\end{aligned}
$$

When we learn to evaluate this expression at $x=0$, it will tell us that the slope of the graph of $\operatorname{sinc}(x)=\frac{\sin x}{x}$ is 0 when $x=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

