Approximations at 0 for Sine, Cosine and Exponential Functions

Here is a list of several linear approximations which you may want to memorize. Half the work of memorizing a linear approximation is memorizing the derivative of a function at a base point, so memorizing these formulas should improve your knowledge of derivatives.

To make things as simple as possible, we always use base point $x_{0}=0$ and assume that $x \approx 0$. Then our general formula becomes:

$$
f(x) \approx f(0)+f^{\prime}(0) x
$$

Remember that when x is not near zero, this approximation probably won't work.
(Later we'll discuss exactly how close x has to be to zero; this is partly a matter of intuition and is very important in applications.)

We want to find linear approximations for the functions $\sin x, \cos x$ and e^{x} when x is near 0 . We'll start by building a table of values of $f^{\prime}(x), f(0)$, and $f^{\prime}(0)$; from these we can "read off" the linear approximations.

$f(x)$	$f^{\prime}(x)$	$f(0)$	$f^{\prime}(0)$
$\sin x$	$\cos x$	0	1
$\cos x$	$-\sin x$	1	0
e^{x}	e^{x}	1	1

We can now plug the values for $f(0)$ and $f^{\prime}(0)$ into our formula $f(x) \approx f(0)+$ $f^{\prime}(0) x$ to get linear approximations for these functions:

1. $\sin x \approx x \quad($ if $x \approx 0) \quad$ (see part (a) of Fig. 1)
2. $\cos x \approx 1 \quad($ if $x \approx 0) \quad$ (see part (b) of Fig. 1)
3. $e^{x} \approx 1+x \quad($ if $x \approx 0)$

Figure 1: Linear approximations to sine and cosine at $x=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

