Derivatives of Sine and Cosine

Using the Creating the Derivative mathlet, select the (default) function $f(x)=$ $\sin (x)$ from the pull-down menu in the lower left corner of the screen. Do not check any of the boxes.

Move the slider or use the \gg button to display the graph of the sine function.
a) For approximately what values of x is the slope of $f(x)=\sin (x)$ equal to 0 ?
b) At approximately what values of x is the slope of $f(x)=\sin (x)$ largest?
c) For each of the values you listed in (b), is the slope positive or negative?
d) Use the information you have collected to sketch the graph of $f^{\prime}(x)$, the derivative of the sine function.
e) Check the box next to the red $f^{\prime}(x)$ to check your work.

Solution

a) For approximately what values of x is the slope of $f(x)=\sin (x)$ equal to 0 ?

The slope of the graph is 0 wherever the tangent line is horizontal. For the sine function, the tangent line is horizontal at the peaks and troughs of its graph: $x=\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$
b) At approximately what values of x is the slope of $f(x)=\sin (x)$ largest?

The slope is the largest when the graph is the steepest. For the sine function, the graph is steepest when crossing the x-axis, at $x=\ldots-2 \pi,-\pi, 0, \pi, 2 \pi \ldots$
c) For each of the values you listed in (b), is the slope positive or negative?

The slope of the graph of the sine function at the x-intercepts alternates between positive and negative as the graph goes up and down across the axis. The slope is positive at $x=\ldots-2 \pi, 0,2 \pi \ldots$ and negative when $x=$ $\ldots-\pi, \pi, 3 \pi, \ldots$
d) Use the information you have collected to sketch the graph of $f^{\prime}(x)$, the derivative of the sine function.

The graph you drew should have peaks at $-2 \pi, 0$ and 2π and troughs at $-\pi$ and π. Its x-intercepts should occur at $x=\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$ Because the graph of $\sin (x)$ is smooth and continuous, your graph should be connected.
It turns out that the graph of the derivative of $\sin (x)$ is also smooth, but it's hard to deduce this just by looking at the graph.
e) Check the box next to the red $f^{\prime}(x)$ to check your work.

Perhaps you already knew that the derivative of $\sin (x)$ is $\cos (x)$. Remember this exercise next time you have trouble remembering whether the derivative of $\cos (x)$ is positive or negative $\sin (x)$, whether the graph of $\sin (x)$ goes up first or down, or what the graph of $\cos (x)$ looks like.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

