Path of a Falling Object

A teenager throws a ball off a rooftop. Assume that the x coordinate of the ball is given by $x(t)=t$ meters and its y coordinate satisfies the following properties:

$$
\begin{aligned}
y^{\prime \prime}(t) & =-9.8 \text { meters } / \text { second } \\
y^{\prime}(0) & =0 \\
y(0) & =5 \text { meters. }
\end{aligned}
$$

a) Find an equation directly describing y in terms of t.
b) Find a parametrization $(x(t), y(t))$ which describes the path of the ball.
c) Find the speed $\frac{d s}{d t}$ of the ball (this answer will only be valid for times before the ball hits the ground.)

Solution

You may wish to begin by drawing a sketch of the situation. The teenager stands at the vertex of what turns out to be the parabolic path of the ball. The ball moves forward at a constant speed of 1 meter per second, and its horizontal position decreases slowly at the beginning and more rapidly at the end.
a) Find an equation directly describing y in terms of t.

Here we've been given the second derivative of a function and some initial conditions and asked to find the equation of the function. Broadly, we find an antiderivative $F(t)+c$ and then use the initial conditions to solve for c. In detail, this looks like:

$$
\begin{aligned}
y^{\prime \prime}(t) & =9.8 \\
y^{\prime}(t) & =9.8 t+c \\
y^{\prime}(0) & =9.8 \cdot 0+c \\
y^{\prime}(0)=0 & \Rightarrow c=0 \\
y^{\prime}(t) & =9.8 t \\
y^{\prime}(t) & =9.8 t \\
y(t) & =\frac{1}{2} 9.8 t^{2}+C \\
y(0) & =4.9 t^{2}+C \\
y(0)=5 & \Rightarrow C=5 \\
y(t) & =4.9 t^{2}+5 .
\end{aligned}
$$

b) Find a parametrization $(x(t), y(t))$ which describes the path of the ball.

Once we've answered the previous problem, this one is easy. Splitting a problem like this into x and y parts can make it more manageable.
We were given that $x(t)=t$, and we found that $y(t)=4.9 t^{2}+5$, so:

$$
(x(t), y(t))=\left(t, 4.9 t^{2}+5\right)
$$

We might graph this curve to see if our answer is reasonable.
c) Find the speed $\frac{d s}{d t}$ of the ball (this answer will only be valid for times before the ball hits the ground.)

In general,

$$
\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

Here, $\frac{d x}{d t}=x^{\prime}(t)=1$ and $\frac{d y}{d t}=y^{\prime}=9.8 t$. Hence,

$$
\begin{aligned}
\frac{d s}{d t} & =\sqrt{1^{2}+(9.8 t)^{2}} \\
& \approx \sqrt{1+96 t^{2}}
\end{aligned}
$$

The speed of the ball is 1 meter per second initially, and it accelerates as t increases. After about one second, the ball is moving at a speed of 10 meters per second. This seems plausible. (For comparison, a pitcher might throw a baseball at 40 meters per second.)

For more practice with parametric equations, compute the time and location at which the ball hits the ground $(y(t)=0)$ and the speed at which it is moving at that time.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

