Implicit Differentiation and the Second Derivative

Calculate $y^{\prime \prime}$ using implicit differentiation; simplify as much as possible.

$$
x^{2}+4 y^{2}=1
$$

Solution

As with the direct method, we calculate the second derivative by differentiating twice. With implicit differentiation this leaves us with a formula for $y^{\prime \prime}$ that involves y and y^{\prime}, and simplifying is a serious consideration.

Recall that to take the derivative of $4 y^{2}$ with respect to x we first take the derivative with respect to y and then multiply by y^{\prime}; this is the "derivative of the inside function" mentioned in the chain rule, while the derivative of the outside function is $8 y$.

So, differentiating both sides of:

$$
x^{2}+4 y^{2}=1
$$

gives us:

$$
2 x+8 y y^{\prime}=0 .
$$

We're now faced with a choice. We could immediately perform implicit differentiation again, or we could solve for y^{\prime} and differentiate again.

If we differentiate again we get:

$$
2+8 y y^{\prime \prime}+8\left(y^{\prime}\right)^{2}=0
$$

In order to solve this for $y^{\prime \prime}$ we will need to solve the earlier equation for y^{\prime}, so it seems most efficient to solve for y^{\prime} before taking a second derivative.

$$
\begin{aligned}
2 x+8 y y^{\prime} & =0 \\
8 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{8 y} \\
y^{\prime} & =\frac{-x}{4 y}
\end{aligned}
$$

Differentiating both sides of this expression (using the quotient rule and implicit differentiation), we get:

$$
\begin{aligned}
y^{\prime \prime} & =\frac{(-1) 4 y-(-x) \cdot 4 y^{\prime}}{(4 y)^{2}} \\
& =\frac{-4 y+4 x y^{\prime}}{16 y^{2}} \\
y^{\prime \prime} & =\frac{-y+x y^{\prime}}{4 y^{2}}
\end{aligned}
$$

We now substitute $\frac{-x}{4 y}$ for y^{\prime} :

$$
\begin{aligned}
y^{\prime \prime} & =\frac{-y+x y^{\prime}}{4 y^{2}} \\
& =\frac{-y+x \frac{-x}{4 y}}{4 y^{2}} \\
& =\frac{x \frac{-x}{4 y}-y}{4 y^{2}} \cdot \frac{4 y}{4 y} \\
& =\frac{-x^{2}-4 y^{2}}{16 y^{3}} \\
y^{\prime \prime} & =-\frac{1}{16 y^{3}}
\end{aligned}
$$

(Don't forget to use the relation $x^{2}+4 y^{2}=1$ at the end!)
How can we check our work? If we recognize $x^{2}+4 y^{2}=1$ as the equation of an ellipse, we can test our equation $y^{\prime}=-x / 4 y$ at the points $(0,1 / 2)$ and $(1,0)$. At $(0,1 / 2), y^{\prime}=-x / 4 y=0$ which agrees with the fact that the tangent line to the ellipse is horizontal at that point. At $(1,0) y^{\prime}$ is undefined, which agrees with the fact that the tangent line to the ellipse at $(1,0)$ is vertical.

Once we have learned how the value of the second derivative is related to the shape of the graph, we can do a similar test of our expression for $y^{\prime \prime}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

