How to Check Your Answer

While it may be difficult to solve a differential equation, it is fairly easy to see if a proposed solution is correct. Check the following results by plugging the proposed answer into the original equation.

a)
$$y = \frac{1}{3}e^x$$
 is a solution to $4y'' - y = e^x$.
b) $y = \frac{1}{x}$ is a solution to $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0$.

Solution

a) $y = \frac{1}{3}e^x$ is a solution to $4y'' - y = e^x$. If $y = \frac{1}{3}e^x$ then $y' = \frac{1}{3}e^x$ and $y'' = \frac{1}{3}e^x$. We now plug these expressions in to the original equation:

$$4y'' - y = 4\left(\frac{1}{3}e^x\right) - \frac{1}{3}e^x$$
$$= \frac{3}{3}e^x$$
$$= e^x.$$

It is true that $4y'' - y = e^x$ when $y = \frac{1}{3}e^x$.

b) $y = \frac{1}{x}$ is a solution to $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0.$

Here $y = x^{-1}$, $\frac{dy}{dx} = -x^{-2}$ and $\frac{d^2y}{dx^2} = 2x^{-3}$. Plugging in to the original equation we get:

$$\begin{aligned} x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y &= x^2 \cdot 2x^{-3} + 3x \cdot (-x^{-2}) + x^{-1} \\ &= 2x^{-1} - 3x^{-1} + x^{-1} \\ &= 0. \end{aligned}$$

Therefore $y = \frac{1}{x}$ is a solution to the differential equation $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0.$

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.