How to Check Your Answer

While it may be difficult to solve a differential equation, it is fairly easy to see if a proposed solution is correct. Check the following results by plugging the proposed answer into the original equation.
a) $y=\frac{1}{3} e^{x}$ is a solution to $4 y^{\prime \prime}-y=e^{x}$.
b) $y=\frac{1}{x}$ is a solution to $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$.

Solution

a) $y=\frac{1}{3} e^{x}$ is a solution to $4 y^{\prime \prime}-y=e^{x}$.

If $y=\frac{1}{3} e^{x}$ then $y^{\prime}=\frac{1}{3} e^{x}$ and $y^{\prime \prime}=\frac{1}{3} e^{x}$. We now plug these expressions in to the original equation:

$$
\begin{aligned}
4 y^{\prime \prime}-y & =4\left(\frac{1}{3} e^{x}\right)-\frac{1}{3} e^{x} \\
& =\frac{3}{3} e^{x} \\
& =e^{x}
\end{aligned}
$$

It is true that $4 y^{\prime \prime}-y=e^{x}$ when $y=\frac{1}{3} e^{x}$.
b) $y=\frac{1}{x}$ is a solution to $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$.

Here $y=x^{-1}, \frac{d y}{d x}=-x^{-2}$ and $\frac{d^{2} y}{d x^{2}}=2 x^{-3}$. Plugging in to the original equation we get:

$$
\begin{aligned}
x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y & =x^{2} \cdot 2 x^{-3}+3 x \cdot\left(-x^{-2}\right)+x^{-1} \\
& =2 x^{-1}-3 x^{-1}+x^{-1} \\
& =0 .
\end{aligned}
$$

Therefore $y=\frac{1}{x}$ is a solution to the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

