The Function $\operatorname{sinc}(x)$

The unnormalized sinc function is defined to be:

$$
\operatorname{sinc}(x)=\frac{\sin x}{x}
$$

This function is used in signal processing, a field which includes sound recording and radio transmission.

Use your understanding of the graphs of $\sin (x)$ and $\frac{1}{x}$ together with what you learned in this lecture to sketch a graph of $\operatorname{sinc}(x)=\sin (x) \cdot \frac{1}{x}$.

Solution

Because $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, we know that $\operatorname{sinc}(0)=1$.
Because $\sin (x)$ oscillates between positive and negative values, $\operatorname{sinc}(x)$ will do so as well. Except at $x=0$, the x-intercepts of the graph of $\operatorname{sinc}(x)$ will match those of $\sin (x)$.

We know that $-1 \leq \sin (x) \leq 1$, so it must be true that:

$$
-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}
$$

The graph of $\operatorname{sinc}(x)$ moves up and down between the graphs of $\frac{1}{x}$ and $-\frac{1}{x}$.

Figure 1: The graphs of $\sin (x)$ (green), $\frac{1}{x}$ (blue) and $-\frac{1}{x}$ (red).
In drawing the graph of $\operatorname{sinc}(x)$ we start by superimposing the graphs of $\sin (x), \frac{1}{x}$ and $-\frac{1}{x}$. (See Figure 1.)

When $x<0$, both $\frac{1}{x}$ and $\sin (x)$ are negative, so their quotient is positive; $\operatorname{sinc}(x)$ turns out to be an even function. Knowing this, we quickly guess that the graph of $\operatorname{sinc}(x)$ looks like graph shown in Figure 2. (It's not easy to tell what the graph will look like near $x=0$. We could deal with this by plotting a few points using a calculator or by learning more calculus and then returning to this problem.)

Figure 2: The graph of $\operatorname{sinc}(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

