$\lim_{x \to 0} \frac{\sin x}{1 - \cos x}$

In this problem attempt to evaluate:

$$\lim_{x \to 0} \frac{\sin x}{1 - \cos x}$$

using approximation.

- a) Substitute linear approximations for $\sin x$ and $\cos x$ into this expression. Can you tell what happens in the limit?
- b) Substitute quadratic approximations for $\sin x$ and $\cos x$ into this expression. Can you tell what happens in the limit?

Solution

If we replace x by 0 in the quotient $\frac{\sin x}{1 - \cos x}$, the result is of the form $\frac{0}{0}$. We can use approximation to study this interesting limit; the results are similar to those we get from l'Hôpital's rule.

a) Substitute linear approximations for $\sin x$ and $\cos x$ into this expression. Can you tell what happens in the limit?

Recall that the quadratic approximations of $\sin x$ and $\cos x$ near x = 0 are:

$$\begin{array}{l}
\cos x \approx 1\\ \sin x \approx x.
\end{array}$$

Thus,

$$\lim_{x \to 0} \frac{\sin x}{1 - \cos x} \approx \lim_{x \to 0} \frac{x}{1 - 1}$$
$$= \lim_{x \to 0} \frac{x}{0}.$$

Replacing $\cos x$ by its linear approximation makes the denominator equal to 0. We begin to have some idea that this rational function is badly behaved, but it's hard to draw a conclusion from this calculation.

b) Substitute quadratic approximations for $\sin x$ and $\cos x$ into this expression. Can you tell what happens in the limit?

The quadratic approximations of $\sin x$ and $\cos x$ near x = 0 are:

$$\cos x \approx 1 - \frac{1}{2}x^2$$
$$\sin x \approx x.$$

 $\lim_{x \to 0} \frac{\sin x}{1 - \cos x} \approx \lim_{x \to 0} \frac{x}{1 - (1 - \frac{1}{2}x^2)}$ $= \lim_{x \to 0} \frac{x}{\frac{1}{2}x^2}$ $= \lim_{x \to 0} \frac{2}{x}.$

We can now see that as x approaches 0 the denominator of $\frac{\sin x}{1 - \cos x}$ approaches 0 more rapidly than the numerator, and so the value of the rational function "blows up" near x = 0.

So:

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.