Divergent Series

As with indefinite integrals, we're concerned about when infinite series converge. We're also interested in what goes wrong when a series diverges - when it fails to converge. Recall that when $|a|<1$,

$$
1+a+a^{2}+a^{3}+\cdots=\frac{1}{1-a}
$$

How does this fail when $|a| \geq 1$?
One simple example of a divergent series is a geometric series with a equal to 1 :

$$
1+1+1+1+\cdots=\frac{1}{1-1}=\frac{1}{0}
$$

This almost makes sense! Since the sum is infinite we conclude that the series diverge.

Now let's try $a=-1$. We get:

$$
1-1+1-1+\cdots
$$

If we look at the partial sums of this sequence we see that they alternate between 1 and 0 . If we plug $a=-1$ into our formula $\frac{1}{1-a}$ it predicts that the sum is $\frac{1}{2}$ which is halfway between 0 and 1 but is still wrong. Using the formula here is the equivalent of computing an indefinite integral without checking for singularities; it gives you an interesting but wrong result.

Because the partial sums of the series alternate between 0 and 1 without ever tending toward a single number, we say that this series is also divergent. The geometric series only converges when $|a|<1$.

We'll look at one more case: $a=2$. According to the formula,

$$
1+2+2^{2}+2^{3}+\cdots=\frac{1}{1-2}=-1
$$

This is clearly wrong. The sequence diverges; the left hand side is obviously infinite and the right hand side is -1 . But number theorists actually have a way of making sense out of this, if they're willing to give up on the idea that 0 is less than 1 .

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

