Derivative of $\operatorname{arcsin}(x)$

For a final example, we quickly find the derivative of $y = \sin^{-1} x = \arcsin x$. As usual, we simplify the equation by taking the sine of both sides:

$$y = \sin^{-1} x$$
$$\sin y = x$$

We next take the derivative of both sides of the equation and solve for $y' = \frac{dy}{dx}$.

$$\sin y = x$$

$$(\cos y) \cdot y' = 1$$

$$y' = \frac{1}{\cos y}$$

We want to rewrite this in terms of $x = \sin y$. Luckily there is a simple trig. identity relating $\cos y$ to $\sin y$. We can solve it for $\cos y$ and "plug in".

$$\cos^2 y + \sin^2 y = 1$$

$$\cos^2 y = 1 - \sin^2 y$$

$$\cos y = \sqrt{1 - \sin^2 y} \quad (\cos y > 0 \text{ on the range of } y = \sin^{-1} x)$$

Plugging this in to our equation for $y' = \frac{d}{dx} \sin^{-1} x$ we get:

$$y' = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}$$

Notice that we made a choice between a positive and negative square root when solving for $\cos y$. We chose the positive square root because we usually define $\sin^{-1} x$ to have outputs between $-\pi/2$ and $\pi/2$, and the cosine function is always positive on this interval.

When dealing with inverse functions we are often faced with choices like this; when in doubt draw a graph and be sure your choices make sense in the context of your problem.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.