Derivative of $\arcsin (x)$

For a final example, we quickly find the derivative of $y=\sin ^{-1} x=\arcsin x$.
As usual, we simplify the equation by taking the sine of both sides:

$$
\begin{aligned}
y & =\sin ^{-1} x \\
\sin y & =x
\end{aligned}
$$

We next take the derivative of both sides of the equation and solve for $y^{\prime}=\frac{d y}{d x}$.

$$
\begin{aligned}
\sin y & =x \\
(\cos y) \cdot y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{\cos y}
\end{aligned}
$$

We want to rewrite this in terms of $x=\sin y$. Luckily there is a simple trig. identity relating $\cos y$ to $\sin y$. We can solve it for $\cos y$ and "plug in".

$$
\begin{aligned}
\cos ^{2} y+\sin ^{2} y & =1 \\
\cos ^{2} y & =1-\sin ^{2} y \\
\cos y & =\sqrt{1-\sin ^{2} y} \quad\left(\cos y>0 \text { on the range of } y=\sin ^{-1} x\right)
\end{aligned}
$$

Plugging this in to our equation for $y^{\prime}=\frac{d}{d x} \sin ^{-1} x$ we get:

$$
y^{\prime}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}}
$$

Notice that we made a choice between a positive and negative square root when solving for $\cos y$. We chose the positive square root because we usually define $\sin ^{-1} x$ to have outputs between $-\pi / 2$ and $\pi / 2$, and the cosine function is always positive on this interval.

When dealing with inverse functions we are often faced with choices like this; when in doubt draw a graph and be sure your choices make sense in the context of your problem.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

