The Formula for Quadratic Approximation

Quadratic approximation is an extension of linear approximation - we're adding one more term, which is related to the second derivative. The formula for the quadratic approximation of a function $f(x)$ for values of x near x_{0} is:

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2} \quad\left(x \approx x_{0}\right)
$$

Compare this to our old formula for the linear approximation of f :

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad\left(x \approx x_{0}\right)
$$

We got from the linear approximation to the quadratic one by adding one more term that is related to the second derivative:

$$
f(x) \approx \underbrace{f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}_{\text {Linear Part }}+\underbrace{\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}}_{\text {Quadratic Part }} \quad\left(x \approx x_{0}\right)
$$

These are more complicated and so are only used when higher accuracy is needed.

We'd like to develop a catalog of quadratic approximations similar to our catalog of linear approximations. Let's start by looking at the quadratic version of our estimate of $\ln (1.1)$. The formula for the quadratic approximation turns out to be:

$$
\ln (1+x) \approx x-\frac{x^{2}}{2}
$$

and so $\ln (1.1)=\ln \left(1+\frac{1}{10}\right) \approx \frac{1}{10}-\frac{1}{2}\left(\frac{1}{10}\right)^{2}=0.095$. This is not the value 0.1 that we got from the linear approximation, but it's pretty close (and slightly more accurate).

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

