Slope of a line tangent to a circle - direct version

A circle of radius 1 centered at the origin consists of all points (x, y) for which $x^{2}+y^{2}=1$. This equation does not describe a function of x (i.e. it cannot be written in the form $y=f(x)$). Indeed, any vertical line drawn through the interior of the circle meets the circle in two points - every x has two corresponding y values. Let's see what goes wrong if we attempt to solve the equation of a circle for y in terms of x.

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
x^{2}+y^{2}-x^{2} & =1-x^{2} \\
y^{2} & =1-x^{2} \\
y & = \pm \sqrt{1-x^{2}}
\end{aligned}
$$

This still isn't a function because we get two choices for y - positive or negative. However, we do get a function if we look just at the positive case (i.e. at just the top half of the circle), and we can then find $\frac{d y}{d x}$, which will be the slope of a line tangent to the top half of the circle.

To compute this derivative, we first convert the square root into a fractional exponent so that we can use the rule from the previous example.

$$
y=\sqrt{1-x^{2}}=\left(1-x^{2}\right)^{\frac{1}{2}}
$$

Next, we need to use the chain rule to differentiate $y=\left(1-x^{2}\right)^{\frac{1}{2}}$. The outside function is $u^{1 / 2}$ and the inside function is $1-x^{2}$, so the chain rule tells us that

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} \\
\frac{d y}{d x}=\frac{1}{2} u^{-1 / 2} \cdot(-2 x)=-x \cdot\left(1-x^{2}\right)^{-1 / 2}=\frac{-x}{\sqrt{1-x^{2}}}
\end{gathered}
$$

If we want, we can use the fact that $y=\sqrt{1-x^{2}}$ to rewrite this as $y^{\prime}=-x / y$.
We conclude that the slope of the line tangent to a point (x, y) on the top half of the unit circle is $-x / y$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

