Example: Reciprocals

Let's use the quotient rule in a simple example. The quotient rule tells us that:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{\frac{d u}{d x} v-u \frac{d v}{d x}}{v^{2}}
$$

In this example u will be 1 , so we'll be finding the derivative of $\frac{1}{v}$, the reciprocal of v.

$$
\frac{d}{d x}\left(\frac{1}{v}\right)=?
$$

We're going to use the formula above. We know $u=1$ and $v=v$, so we still need to find $\frac{d u}{d x}$ and $\frac{d v}{d x}$ before we can apply the formula.

The derivative of a constant (like 1) is zero, so $\frac{d u}{d x}=0$. We don't know what v is, so we'll just write $\frac{d v}{d x}=v^{\prime}$. Plugging all this in to the quotient rule formula we get:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{v}\right) & =\frac{0 \cdot v-1 v^{\prime}}{v^{2}} \\
& =\frac{-v^{\prime}}{v^{2}} \\
& =-v^{-2} v^{\prime}
\end{aligned}
$$

Now we have a general formula that lets us differentiate reciprocals! Next, let's use this formula to see what happens when $u=1$ and $v=x^{n}$. Here again $\frac{d u}{d x}=0$ and now $v^{\prime}=\frac{d}{d x} x^{n}=n x^{n-1}$.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{x^{n}}\right) & =-v^{-2} v^{\prime} \\
& =-\left(x^{n}\right)^{-2}\left(n x^{n-1}\right) \\
& =-x^{-2 n}\left(n x^{n-1}\right) \\
& =-n x^{-n-1}
\end{aligned}
$$

But $\frac{1}{x^{n}}=x^{-n}$, which is x to a power. We have a rule for taking the derivative of x to a positive power; how does that compare to our new rule for the derivative of x to a negative power?

$$
\frac{d}{d x} x^{-n}=-n x^{-n-1}
$$

This agrees with the formula $\frac{d}{d x} x^{n}=n x^{n-1}$, so the quotient rule confirms that our rule for taking the derivative of x^{n} works even when n is negative.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

