Linear Approximation and the Definition of the Derivative

Another way to understand the formula for linear approximation involves the definition of the derivative:

$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}
$$

Look at this backward:

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=f^{\prime}\left(x_{0}\right)
$$

We can interpret this to mean that:

$$
\frac{\Delta f}{\Delta x} \approx f^{\prime}\left(x_{0}\right) \quad \text { when } \Delta x \approx 0
$$

In other words, the average rate of change $\frac{\Delta f}{\Delta x}$ is nearly the same as the infinitesimal rate of change $f^{\prime}\left(x_{0}\right)$.

We can see that this is the same as our original formula

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

if we multiply both sides by Δx and remind ourselves what Δx and Δf are abbreviations for:

$$
\begin{aligned}
\frac{\Delta f}{\Delta x} & \approx f^{\prime}\left(x_{0}\right) \\
\Delta x \cdot \frac{\Delta f}{\Delta x} & \approx f^{\prime}\left(x_{0}\right) \cdot \Delta x \\
\Delta f & \approx f^{\prime}\left(x_{0}\right) \cdot \Delta x \\
f(x)-f\left(x_{0}\right) & \approx f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
f(x) & \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
\end{aligned}
$$

So we have two different ways of writing a formula for linear approximation. When you're solving linear approximation problems, try to choose the most appropriate formula for the problem you're working on.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

