Derivative of a Power Series

We can differentiate power series. For example, $\cos (x)=\sin ^{\prime}(x)$ so we can find a power series for $\cos (x)$ by differentiating the power series for $\sin (x)$ term by term - the same way we differentiate polynomials.

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos (x) & =\sin ^{\prime}(x) \\
& =1-3 \frac{x^{2}}{3!}+5 \frac{x^{4}}{5!}-7 \frac{x^{6}}{7!}+\cdots \\
\cos (x)= & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

Notice how $3 \frac{x^{2}}{3!}$ became $\frac{x^{2}}{2!}$ when we canceled the 3 's. This happens with each term of the power series.

The radius of convergence of the derivative of a power series is the same as the radius of convergence of the power series you started with. Here $R=1$.

Of course, you could get this same formula using Taylor's formula and the derivatives of the cosine function.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

