Using Differentials to Study Population Dynamics

We have seen that differentials give a convenient way for expressing linear approximations. In this example, we explore population dynamics in the language of differentials.

A simple generational model of population dynamics says that an initial population x will yield a next generation with population given by a function P(x). The next generation after that is given by "iterating" the function P, that is, P(P(x)). We can keep applying P to the result to find the population of successive generations. Note in particular that population will be stable over generations at any x such that P(x) = x. Such an x is known as a "fixed point."

We say that a fixed point x_0 is "attracting" if, given an initial population value $x_0 + \Delta x$ with Δx sufficiently small, the successive generations have size closer and closer to x_0 . More formally, the sequence of values

$$x_0 + \Delta x, P(x_0 + \Delta x), P(P(x_0 + \Delta x)), P(P(P(x_0 + \Delta x))), \dots$$

gets closer and closer to x_0 .

Question:

- Show that if x_0 is a fixed point of P(x) and $|P'(x_0)| < 1$, then x_0 is attracting.
- Given fixed positive constants a, b with ab > 1, find the fixed points of P(x) = ax(b-x) and determine if they are attracting.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.