Can Design

There are many factors to consider in food packaging, including marketing, durability, cost and materials. In this problem we minimize the cost of materials for a can.

Find the height and radius that minimizes the surface area of a can whose volume is 1 liter $=1000 \mathrm{~cm}^{3}$.

Solution

We start by drawing a sketch of the can.
The formula for its volume is (area of base) \cdot (height) $=\pi r^{2} h$. Its surface consists of three parts - top, bottom and sides. The surface areas of the top and bottom are πr^{2}. The surface area of the sides is found by multiplying the circumference of the bottom by the height of the can; it is $2 \pi r h$.

We now have the two equations:

$$
\begin{aligned}
V=1 \text { liter } & =\pi r^{2} h \\
S A & =2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

We wish to minimize the surface area, which suggests taking a derivative. Since h is dependent on r we cannot directly take the derivative of SA directly yet. We solve the volume equation for h :

$$
\begin{aligned}
1 & =\pi r^{2} h \\
h & =\frac{1}{\pi r^{2}}
\end{aligned}
$$

We can now plug this expression in to the surface area equation and take the derivative with respect to r.

$$
\begin{aligned}
S A & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi r^{2}+2 \pi r \frac{1}{\pi r^{2}} \\
S A & =2 \pi r^{2}+\frac{2}{r} \\
\frac{d}{d r} S A & =4 \pi r-\frac{2}{r^{2}}
\end{aligned}
$$

To find the critical points, we set the derivative equal to zero and solve for r :

$$
\begin{aligned}
\frac{d}{d r} S A & =0 \\
4 \pi r-\frac{2}{r^{2}} & =0 \\
4 \pi r & =\frac{2}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
r^{3} & =\frac{1}{2 \pi} \\
r & =\frac{1}{\sqrt[3]{2 \pi}}
\end{aligned}
$$

We now know that there is a critical point at $r=\frac{1}{\sqrt[3]{2 \pi}}$, but we do not know if this corresponds to a minimum surface area. We must also consider the "end points" of the graph of our function.

As r approaches 0 , the can is increasingly tall and thin; the area of the sides of the can approaches infinity. This is not the best solution.

As r increases the surface area $2 \pi r^{2}+\frac{2}{r}$ goes to infinity, so the minimum is not at this endpoint either.

We conclude that the critical point $r=\frac{1}{\sqrt[3]{2 \pi}}$ probably represents the minimum surface area. To be sure, we calculate h and estimate the size of the can.

$$
\begin{aligned}
h & =\frac{1}{\pi r^{2}} \\
& =\frac{1}{\pi\left(\frac{1}{\sqrt[3]{2 \pi}}\right)^{2}} \\
h & =\sqrt[3]{\frac{4}{\pi}}
\end{aligned}
$$

One liter is 1000 cubic centimeters, so $r=\sqrt[3]{\frac{1}{2 \pi} \text { liters }} \approx 5 \mathrm{~cm}$ and $h \approx$ 11 cm . This is about the same size as the bottom half of a 2 liter bottle, so seems like a reasonable answer.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

