Substitution Practice

Use a trigonometric substitution to integrate the function $f(x) = x\sqrt{x^2 - 9}$. Check your work by integration using the substitution $u = x^2$.

Solution

Referring to our trig substitution summary, we see that the recommended way to integrate an expression including $\sqrt{x^2 - 3^2}$ is to substitute $x = 3 \sec \theta$, in which case $dx = 3 \sec \theta \tan \theta \, d\theta$ and:

$$\sqrt{x^2 - 9} = \sqrt{(3 \sec \theta)^2 - 9}$$
$$= \sqrt{9 \sec^2 \theta - 9}$$
$$= 3\sqrt{\sec^2 \theta - 1}$$
$$\sqrt{x^2 - 9} = 3 \tan \theta.$$

We start by performing this substitution and simplifying:

$$\int x\sqrt{x^2 - 9} \, dx = \int (3\sec\theta)(3\tan\theta)3\sec\theta\tan\theta \, d\theta$$
$$= 27 \int \sec^2\theta \tan^2\theta \, d\theta.$$

At this point we substitute $u = \tan \theta$, so $du = \sec^2 \theta \, d\theta$ and:

$$\int x\sqrt{x^2 - 9} \, dx = 27 \int \sec^2 \theta \tan^2 \theta \, d\theta$$
$$= 27 \int u^2 \, du$$
$$= 27 \frac{u^3}{3} + c$$
$$= 9 \tan^3 \theta + c$$

We have an answer in terms of $\tan \theta$ and we want an answer in terms of x. We know that $x = 3 \sec \theta$, or equivalently that $\sec \theta = \frac{x}{3}$. Keeping that fact in mind (or the fact that $\cos \theta = \frac{3}{x}$) we draw a right triangle with one angle equal to θ in which the side adjacent to θ has length 3 and the hypotenuse has length x. By the Pythagorean theorem, the side opposite the angle θ has length $\sqrt{x^2 - 9}$ and:

$$\tan \theta = \frac{\sqrt{x^2 - 9}}{3}.$$

We can now complete our calculation:

$$\int x\sqrt{x^2-9}\,dx = 9\tan^3\theta + c$$

$$= 9\left(\frac{\sqrt{x^2-9}}{3}\right)^3 + c$$
$$\int x\sqrt{x^2-9} \, dx = \frac{1}{3}(x^2-9)^{3/2} + c$$

While the calculation above is correct, it is faster and more reliable to compute this integral via the substitution $u = x^2 - 9$. If we do this we have $du = 2x \, dx$ or $x \, dx = \frac{1}{2} \, du$ and:

$$\int x\sqrt{x^2 - 9} \, dx = \int \sqrt{u} \, \frac{1}{2} \, du$$
$$= \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + c$$
$$= \frac{1}{3} u^{3/2} + c$$
$$\int x\sqrt{x^2 - 9} \, dx = \frac{1}{3} (x^2 - 9)^{3/2} + c.$$

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.