Substitution Practice

Use a trigonometric substitution to integrate the function $f(x)=x \sqrt{x^{2}-9}$. Check your work by integration using the substitution $u=x^{2}$.

Solution

Referring to our trig substitution summary, we see that the recommended way to integrate an expression including $\sqrt{x^{2}-3^{2}}$ is to substitute $x=3 \sec \theta$, in which case $d x=3 \sec \theta \tan \theta d \theta$ and:

$$
\begin{aligned}
\sqrt{x^{2}-9} & =\sqrt{(3 \sec \theta)^{2}-9} \\
& =\sqrt{9 \sec ^{2} \theta-9} \\
& =3 \sqrt{\sec ^{2} \theta-1} \\
\sqrt{x^{2}-9} & =3 \tan \theta
\end{aligned}
$$

We start by performing this substitution and simplifying:

$$
\begin{aligned}
\int x \sqrt{x^{2}-9} d x & =\int(3 \sec \theta)(3 \tan \theta) 3 \sec \theta \tan \theta d \theta \\
& =27 \int \sec ^{2} \theta \tan ^{2} \theta d \theta
\end{aligned}
$$

At this point we substitute $u=\tan \theta$, so $d u=\sec ^{2} \theta d \theta$ and:

$$
\begin{aligned}
\int x \sqrt{x^{2}-9} d x & =27 \int \sec ^{2} \theta \tan ^{2} \theta d \theta \\
& =27 \int u^{2} d u \\
& =27 \frac{u^{3}}{3}+c \\
& =9 \tan ^{3} \theta+c
\end{aligned}
$$

We have an answer in terms of $\tan \theta$ and we want an answer in terms of x. We know that $x=3 \sec \theta$, or equivalently that $\sec \theta=\frac{x}{3}$. Keeping that fact in mind (or the fact that $\cos \theta=\frac{3}{x}$) we draw a right triangle with one angle equal to θ in which the side adjacent to θ has length 3 and the hypotenuse has length x. By the Pythagorean theorem, the side opposite the angle θ has length $\sqrt{x^{2}-9}$ and:

$$
\tan \theta=\frac{\sqrt{x^{2}-9}}{3}
$$

We can now complete our calculation:

$$
\int x \sqrt{x^{2}-9} d x=9 \tan ^{3} \theta+c
$$

$$
\begin{aligned}
& =9\left(\frac{\sqrt{x^{2}-9}}{3}\right)^{3}+c \\
\int x \sqrt{x^{2}-9} d x & =\frac{1}{3}\left(x^{2}-9\right)^{3 / 2}+c
\end{aligned}
$$

While the calculation above is correct, it is faster and more reliable to compute this integral via the substitution $u=x^{2}-9$. If we do this we have $d u=2 x d x$ or $x d x=\frac{1}{2} d u$ and:

$$
\begin{aligned}
\int x \sqrt{x^{2}-9} d x & =\int \sqrt{u} \frac{1}{2} d u \\
& =\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}+c \\
& =\frac{1}{3} u^{3 / 2}+c \\
\int x \sqrt{x^{2}-9} d x & =\frac{1}{3}\left(x^{2}-9\right)^{3 / 2}+c
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

