1. Compute the area between the curves $x=y^{2}-4 y$ and $x=2 y-y^{2}$.
2. Find the volume of the solid obtained by revolving the region bounded by the curves $y=e^{x}, y=2$, and $x=0$ about the line $y=-1$. You only need to give a definite integral expressing the volume. Do not solve the integral.
3. Evaluate each of the following expressions
(a)

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+i \cdot \frac{3}{n}\right)^{2} \frac{3}{n}
$$

(b) The value $f(4)$ for the continuous function $f$ satisfying

$$
x \sin \pi x=\int_{0}^{x^{2}} f(t) d t
$$

4. (a) Find the centroid (i.e. center of mass) of a right triangle with height $h$ and base $r$ (assuming the triangle has uniform density). For a plane figure with uniform density, the coordinates of the center of mass are given by weighted averages, where the weighting function is the moment of inertia:

$$
\left(\frac{\int x f(x) d x}{\int f(x) d x}, \frac{\int y g(y) d y}{\int g(y) d y}\right) .
$$

(b) Pappus' Theorem says that the volume of the solid formed by rotating a region is the area of the region times the distance traveled by the rotating centroid. Use Pappus' Theorem and your answer in the previous part to find the volume of a cone with height $h$ and base radius $r$.
5. Given a definite integral

$$
\int_{a}^{b} f(x) d x
$$

let $T_{n}$ be the trapezoid approximation with $n$ intervals, $M_{n}$ the midpoint approximation using $n$ intervals, and $S_{2 n}$ the Simpson's rule approximation using $2 n$ intervals. Prove that

$$
\frac{1}{3} T_{n}+\frac{2}{3} M_{n}=S_{2 n} .
$$

6. A tank contains 1000 L of brine (that is, salt water) with 15 kg of dissolved salt. Pure water enters the top of the tank at a constant rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is thoroughly mixed and drains from the bottom of the tank at the same rate so that the volume of liquid in the tank is constant.
(a) Find a differential equation expressing the rate at which salt leaves the tank.
(b) Solve this differential equation to find an expression for the amount of salt (in kg ) in the mixture at time $t$.
(c) How long does it take for the total amount of salt in the brine to be reduced by half its original amount? (Recall $\ln 2 \approx .693$.)

MIT OpenCourseWare
http://ocw.mit.edu

### 18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

