Integral of $x^{4} \cos x$

This problem provides a lot of practice with integration by parts.
Compute the integral of $x^{4} \cos x$.

Solution

A single application of integration by parts simplifies, but does not solve, this integral. We must repeat integration by parts several times (or look up a reduction formula for integrating $x^{n} \cos x$) to complete the integration.

Taking the derivative of $\cos x$ does not simplify it, while the derivative of x^{4} is slightly simpler. (In general, if we see sine, cosine or exponential functions, we should consider assigning them the role of v^{\prime}.) We integrate by parts using the following assignments:

$$
\begin{array}{ll}
u=x^{4} & v=\sin x \\
u^{\prime}=4 x^{3} & v^{\prime}=\cos x
\end{array}
$$

to get:

$$
\int x^{4} \cos x d x=x^{4} \sin x-\int 4 x^{3} \sin x d x
$$

We do not have a formula for $\int 4 x^{3} \sin x d x$, but a similar integration by parts will get us closer to one:

$$
\begin{gathered}
u=4 x^{3} \quad l=-\cos x \\
u^{\prime}=12 x^{2} \quad v^{\prime}=\sin x \\
\Rightarrow \quad \int 4 x^{3} \sin x d x=-4 x^{3} \cos x+\int 12 x^{2} \cos x d x
\end{gathered}
$$

We must integrate by parts twice more before we can finish the problem.

$$
\begin{gathered}
u=12 x^{2} \quad v=\sin x \\
u^{\prime}=24 x \quad v^{\prime}=\cos x \\
\Rightarrow \quad \int 12 x^{2} \cos x d x=12 x^{2} \sin x-\int 24 x \sin x d x \\
u=24 x \quad \\
u^{\prime}=24 \quad v^{\prime}=-\sin x \\
\Rightarrow \quad \int 24 x \sin x d x=-24 x \cos x+\int 24 \cos x d x
\end{gathered}
$$

Now we have all the pieces and can assemble them into our final answer:

$$
\begin{aligned}
\int x^{4} \cos x d x & =x^{4} \sin x-\int 4 x^{3} \sin x d x \\
& =x^{4} \sin x-\left(-4 x^{3} \cos x+\int 12 x^{2} \cos x d x\right)
\end{aligned}
$$

$$
\begin{aligned}
= & x^{4} \sin x+4 x^{3} \cos x-\left(12 x^{2} \sin x-\int 24 x \sin x d x\right) \\
= & x^{4} \sin x+4 x^{3} \cos x-12 x^{2} \sin x \\
& +\left(-24 x \cos x+\int 24 \cos x d x\right) \\
= & x^{4} \sin x+4 x^{3} \cos x-12 x^{2} \sin x-24 x \cos x+24 \sin x \\
& +c .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

