Quadratic Approximation at 0 for Several Examples

We'll save the derivation of the formula:

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2} \quad\left(x \approx x_{0}\right)
$$

for later; right now we're going to find formulas for quadratic approximations of the functions for which we have a library of linear approximations.

Basic Quadratic Approximations:

In order to find quadratic approximations we need to compute second derivatives of the functions we're interested in:

$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f(0)$	$f^{\prime}(0)$	$f^{\prime \prime}(0)$
$\sin x$	$\cos x$	$-\sin x$	0	1	0
$\cos x$	$-\sin x$	$-\cos x$	1	0	-1
e^{x}	e^{x}	3^{x}	1	1	1
$\ln (1+x)$	$\frac{1}{1+x}$	$\frac{-1}{(1+x)^{2}}$	0	1	-1
$(1+x)^{r}$	$r(1+x)^{r-1}$	$r(r-1)(1+x)^{r-2}$	1	r	$r(r-1)$.

Plugging the values for $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$ in to the quadratic approximation we get:

1. $\sin x \approx x \quad($ if $x \approx 0)$
2. $\cos x \approx 1-\frac{x^{2}}{2} \quad($ if $x \approx 0)$
3. $e^{x} \approx 1+x+\frac{1}{2} x^{2} \quad($ if $x \approx 0)$
4. $\ln (1+x) \approx x-\frac{1}{2} x^{2} \quad($ if $x \approx 0)$
5. $(1+x)^{r} \approx 1+r x+\frac{r(r-1)}{2} x^{2} \quad($ if $x \approx 0)$

We've computed some formulas; now let's think about their meaning.

Geometric significance (of the quadratic term)

A quadratic approximation gives a best-fit parabola to a function. For example, let's consider $f(x)=\cos (x)$ (see Figure 1).

The linear approximation of $\cos x$ near $x_{0}=0$ approximates the graph of the cosine function by the straight horizontal line $y=1$. This doesn't seem like a very good approximation.

The quadratic approximation to the graph of $\cos (x)$ is a parabola that opens downward; this is much closer to the shape of the graph at $x_{0}=0$ than the line

Figure 1: Quadratic approximation to $\cos (x)$.
$y=1$. To find the equation of this quadratic approximation we set $x_{0}=0$ and perform the following calculations:

$$
\begin{array}{rll}
f(x)=\cos (x) & \Longrightarrow & f(0)=\cos (0)=1 \\
f^{\prime}(x)=-\sin (x) & \Longrightarrow & f^{\prime}(0)=-\sin (0)=0 \\
f^{\prime \prime}(x)=-\cos (x) & \Longrightarrow & f^{\prime \prime}(0)=-\cos (0)=-1
\end{array}
$$

We conclude that:

$$
\cos (x) \approx 1+0 \cdot x-\frac{1}{2} x^{2}=1-\frac{1}{2} x^{2}
$$

This is the closest (or "best fit") parabola to the graph of $\cos (x)$ when x is near 0 .

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

