Quadratic Approximation at 0 for Several Examples

We'll save the derivation of the formula:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 \quad (x \approx x_0)$$

for later; right now we're going to find formulas for quadratic approximations of the functions for which we have a library of linear approximations.

Basic Quadratic Approximations:

In order to find quadratic approximations we need to compute second derivatives of the functions we're interested in:

f(x)	f'(x)	f''(x)	f(0)	f'(0)	$f^{\prime\prime}(0)$
$\sin x$	$\cos x$	$-\sin x$	0	1	0
$\cos x$	$-\sin x$	$-\cos x$	1	0	-1
e^x	e^x	3^x	1	1	1
$\ln(1+x)$	$\frac{1}{1+x}$	$\frac{-1}{(1+x)^2}$	0	1	-1
$(1+x)^{r}$	$r(1+x)^{r-1}$	$r(r-1)(1+x)^{r-2}$	1	r	r(r-1).

Plugging the values for f(0), f'(0) and f''(0) in to the quadratic approximation we get:

1.
$$\sin x \approx x$$
 (if $x \approx 0$)
2. $\cos x \approx 1 - \frac{x^2}{2}$ (if $x \approx 0$)
3. $e^x \approx 1 + x + \frac{1}{2}x^2$ (if $x \approx 0$)
4. $\ln(1+x) \approx x - \frac{1}{2}x^2$ (if $x \approx 0$)
5. $(1+x)^r \approx 1 + rx + \frac{r(r-1)}{2}x^2$ (if $x \approx 0$)

We've computed some formulas; now let's think about their meaning.

Geometric significance (of the quadratic term)

A quadratic approximation gives a best-fit parabola to a function. For example, let's consider f(x) = cos(x) (see Figure 1).

The linear approximation of $\cos x$ near $x_0 = 0$ approximates the graph of the cosine function by the straight horizontal line y = 1. This doesn't seem like a very good approximation.

The quadratic approximation to the graph of cos(x) is a parabola that opens downward; this is much closer to the shape of the graph at $x_0 = 0$ than the line

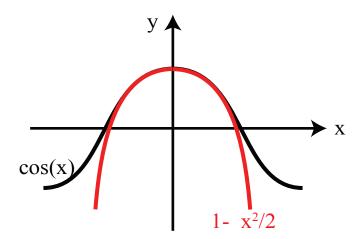


Figure 1: Quadratic approximation to $\cos(x)$.

y = 1. To find the equation of this quadratic approximation we set $x_0 = 0$ and perform the following calculations:

$$f(x) = \cos(x) \implies f(0) = \cos(0) = 1$$

$$f'(x) = -\sin(x) \implies f'(0) = -\sin(0) = 0$$

$$f''(x) = -\cos(x) \implies f''(0) = -\cos(0) = -1.$$

We conclude that:

$$\cos(x) \approx 1 + 0 \cdot x - \frac{1}{2}x^2 = 1 - \frac{1}{2}x^2.$$

This is the closest (or "best fit") parabola to the graph of cos(x) when x is near 0.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.