Evaluating an Interesting Limit

Using $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$, calculate:

1. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{3 n}$
2. $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{5 n}$
3. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{5 n}$

Solution

1. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{3 n}$

The key to all of these problems is forcing them into the form $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
In this problem we do this by using rules of exponents to remove the 3 from the exponent.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{3 n} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n \cdot 3} \\
& =\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)^{n}\right]^{3} \\
& =\left[\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}\right]^{3} \\
& =e^{3}
\end{aligned}
$$

How do we know that $\lim _{n \rightarrow \infty}\left(f(n)^{3}\right)=\left(\lim _{n \rightarrow \infty} f(n)\right)^{3}$? This works because the function $g(x)=x^{3}$ is continuous; we could also justify it using what we know about limits of products.
2. $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{5 n}$

In this problem we could easily remove the 5 from the exponent but there's no easy way to remove the numerator of 2 . We must apply a change of variables to rewrite $\frac{2}{n}$ in the form $\frac{1}{m}$.

$$
\begin{aligned}
\frac{2}{n} & =\frac{1}{m} \\
2 & =\frac{n}{m}
\end{aligned}
$$

$$
n=2 m
$$

Note that $\lim _{n \rightarrow \infty} n=\lim _{m \rightarrow \infty} 2 m=\infty$. (Does it matter that m goes to infinity half as fast as n does? Why or why not?)

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{5 n} & =\lim _{m \rightarrow \infty}\left(1+\frac{2}{2 m}\right)^{5 \cdot 2 m} \\
& =\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{10 m} \\
& =\lim _{m \rightarrow \infty}\left[\left(1+\frac{1}{m}\right)^{m}\right]^{10} \\
& =e^{10}
\end{aligned}
$$

3. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{5 n}$

This problem is very similar to the previous one.

$$
\begin{aligned}
\frac{1}{2 n} & =\frac{1}{m} \\
m & =2 n \\
n & =\frac{m}{2}
\end{aligned}
$$

Again, $\lim _{n \rightarrow \infty} n=\lim _{m \rightarrow \infty} \frac{m}{2}=\infty$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{5 n} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{2\left(\frac{m}{2}\right)}\right)^{5 \frac{m}{2}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{m}\right)^{\frac{5}{2} m} \\
& =e^{5 / 2}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

