Smoothing a Piecewise Polynomial

For each of the following, find all values of a and b for which $f(x)$ is differentiable.
a) $f(x)= \begin{cases}a x^{2}+b x+6, & x \leq 0 ; \\ 2 x^{5}+3 x^{4}+4 x^{2}+5 x+6, & x>0 .\end{cases}$
b) $f(x)= \begin{cases}a x^{2}+b x+6, & x \leq 1 ; \\ 2 x^{5}+3 x^{4}+4 x^{2}+5 x+6, & x>1\end{cases}$

Solution

a) $f(x)= \begin{cases}a x^{2}+b x+6, & x \leq 0 ; \\ 2 x^{5}+3 x^{4}+4 x^{2}+5 x+6, & x>0 .\end{cases}$

This problem is similar to one we have already seen. The piecewise function $f(x)$ is made up of two polynomial functions, each of which is continuous and differentiable. The only point at which the derivative of $f(x)$ might not be defined is at $x=0$.

Our task is to find values of a and b that ensure that the limit:

$$
\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x)-f(0)}{\Delta x}
$$

is well defined, no matter how the limit is computed.
First, we find values of a and b for which $f(x)$ is continuous:

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} a x^{2}+b x+6 \\
=6 \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 2 x^{5}+3 x^{4}+4 x^{2}+5 x+6 \\
=6
\end{gathered}
$$

For all values of a and $b, f(x)$ is continuous at $x=0$.
Next we compute the derivative of $f(x)$ where it is defined:

$$
f^{\prime}(x)= \begin{cases}2 a x+b, & x<0 \\ 10 x^{4}+12 x^{3}+8 x+5, & x>0\end{cases}
$$

Finally, we determine the values of a and b that ensure that the slopes of the two parts of $f(x)$ match at $x=0$:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f^{\prime}(x) & =\lim _{x \rightarrow 0^{-}} 2 a x+b \\
& =b
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f^{\prime}(x) & =\lim _{x \rightarrow 0^{+}} 10 x^{4}+12 x^{3}+8 x+5 \\
& =5
\end{aligned}
$$

We conclude that when $b=5$ and a is any real number, $f(x)$ is differentiable. This makes sense; the two parts of the graph of $f(x)$ always touch at $(0,6)$ and the constraint $b=5$ is all that's needed to ensure that their tangent lines have the same slopes at that point.
b) $f(x)= \begin{cases}a x^{2}+b x+6, & x \leq 1 ; \\ 2 x^{5}+3 x^{4}+4 x^{2}+5 x+6, & x>1\end{cases}$

The procedure for this part of the problem is the same as for the previous part. Because the definition of $f(x)$ changes at $x=1$, the requirement that $f(x)$ be continuous now affects the values of a and b :

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} a x^{2}+b x+6 \\
=a+b+6 \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2 x^{5}+3 x^{4}+4 x^{2}+5 x+6 \\
=20
\end{gathered}
$$

We conclude that $f(x)$ is continuous whenever $a+b+6=20$, or when $a+b=14$.

To determine where f is differentiable, we start by finding the slope of the tangent line to the graph of $f(x)$ at every point $x \neq 1$:

$$
f^{\prime}(x)= \begin{cases}2 a x+b, & x<1 \\ 10 x^{4}+12 x^{3}+8 x+5, & x>1\end{cases}
$$

We could now substitute $14-b$ for a. We choose not to for the sake of simplicity.

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{-}} 2 a x+b \\
=2 a+b \\
\lim _{x \rightarrow 1^{+}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}} 10 x^{4}+12 x^{3}+8 x+5 \\
=35
\end{gathered}
$$

In order for $f(x)$ to be differentiable, it must be continuous and the left hand and right hand limits of its derivative must match at $x=1$. In other words:

$$
\begin{aligned}
a+b & =14 \\
2 a+b & =35
\end{aligned}
$$

Subtracting the first equation from the second, we find that $a=21$ and $b=-7$. (We could get the same result by substituting $14-b$ into the second equation for a and then solving for b.)

We conclude that $f(x)$ is differentiable when $a=21$ and $b=-7$. We could check our work by graphing.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

