An Alternate Solution

Figure 1: The area of the shaded region is $\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x$.

As Professor Miller explained in lecture, the area of the region shown in Figure 1 is $\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x$. Use the substitution $x=a \cos \theta$ to solve this integral. Hint: pay particular attention to your limits of integration.

Solution

In lecture, Professor Miller drew this picture in such a way that it was more natural to substitute $a \sin \theta$ rather than $a \cos \theta$. In this problem we verify that the two methods of finding the area yield the same result.

Notice that when $x=0, \theta=\pi / 2$ (assuming we're using polar coordinates). When $x=b, \theta=\arccos \left(\frac{b}{a}\right)<\pi / 2$. As x increases, θ decreases. Although it's not strictly necessary, in the solution presented here we reverse the limits of integration to ensure that θ is increasing over the interval.

$$
\begin{aligned}
\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x & =\int_{\frac{\pi}{2}}^{\arccos \left(\frac{b}{a}\right)} \sqrt{a^{2}-(a \cos \theta)^{2}} \cdot(-a \sin \theta) d \theta \\
& =-\int_{\arccos \left(\frac{b}{a}\right)}^{\frac{\pi}{2}} \sqrt{a^{2}-a^{2} \cos ^{2} \theta} \cdot(-a \sin \theta) d \theta \\
& =a \int_{\arccos \left(\frac{b}{a}\right)}^{\frac{\pi}{2}} a \sqrt{\left(1-\cos ^{2} \theta\right)} \cdot \sin \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2} \int_{\arccos \left(\frac{b}{a}\right)}^{\frac{\pi}{2}} \sqrt{\sin ^{2} \theta} \cdot \sin \theta d \theta \\
& =a^{2} \int_{\arccos \left(\frac{b}{a}\right)}^{\frac{\pi}{2}} \sin ^{2} \theta d \theta \quad(\text { from the diagram, } \sin \theta>0) \\
& =a^{2} \int_{\arccos \left(\frac{b}{a}\right)}^{\frac{\pi}{2}}\left(\frac{1-\cos 2 \theta}{2}\right) d \theta \\
& =a^{2}\left[\frac{\theta}{2}-\frac{\sin (2 \theta)}{4}\right]_{\arccos \left(\frac{b}{a}\right)}^{\frac{\pi}{2}} \\
& =a^{2}\left[\left(\frac{\frac{\pi}{2}}{2}-\frac{\sin \left(2 \cdot \frac{\pi}{2}\right)}{4}\right)-\left(\frac{\arccos \left(\frac{b}{a}\right)}{2}-\frac{\sin \left(2 \arccos \left(\frac{b}{a}\right)\right)}{4}\right)\right] \\
\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x & =a^{2}\left(\frac{\pi}{4}-\frac{\arccos \left(\frac{b}{a}\right)}{2}+\frac{\sin \left(2 \arccos \left(\frac{b}{a}\right)\right)}{4}\right)
\end{aligned}
$$

As Professor Miller noted, the identity $\sin (2 t)=2 \sin t \cos t$ is helpful at this stage.

$$
\begin{aligned}
\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x & =a^{2}\left(\frac{\pi}{4}-\frac{\arccos \left(\frac{b}{a}\right)}{2}+\frac{2 \sin \left(\arccos \left(\frac{b}{a}\right)\right) \cos \left(\arccos \left(\frac{b}{a}\right)\right)}{4}\right) \\
& =a^{2}\left(\frac{\pi}{4}-\frac{\arccos \left(\frac{b}{a}\right)}{2}+\frac{\sin \left(\arccos \left(\frac{b}{a}\right)\right)\left(\frac{b}{a}\right)}{2}\right)
\end{aligned}
$$

We need to understand $\arccos \left(\frac{b}{a}\right)$ in order to further simplify this result. To do so, we can draw a diagonal line through the shaded region in Figure 1 to form a right triangle in which an leg of length b meets a hypotenuse of length a at an angle t. Then $\cos t=\frac{b}{a}$ or $t=\arccos \left(\frac{b}{a}\right)$. Using this diagram and the Pythagorean theorem, we conclude that $\sin \left(\arccos \left(\frac{b}{a}\right)\right)=\frac{\sqrt{a^{2}-b^{2}}}{a}$ and so:

$$
\begin{aligned}
\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x & =a^{2}\left(\frac{\pi}{4}-\frac{\arccos \left(\frac{b}{a}\right)}{2}+\frac{b}{2 a} \frac{\sqrt{a^{2}-b^{2}}}{a}\right) \\
& =a^{2}\left(\frac{\pi}{4}-\frac{\arccos \left(\frac{b}{a}\right)}{2}\right)+\frac{b}{2} \sqrt{a^{2}-b^{2}} \\
\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x & =\frac{a^{2}\left(\frac{\pi}{2}-t\right)}{2}+\frac{b \sqrt{a^{2}-b^{2}}}{2}
\end{aligned}
$$

When Professor Miller did this calculation by substituting $a \sin \theta$, he got the result $\int_{0}^{b} \sqrt{a^{2}-y^{2}} d y=\frac{a^{2} \theta_{0}}{2}+\frac{b \sqrt{a^{2}-b^{2}}}{2}$. We can check our work by noting that our $\frac{\pi}{2}-t$ is equal to Professor Miller's θ_{0}.

Alternately, we could note that the area of the largest circular sector contained in the shaded region is $\frac{\pi}{4} a^{2}-\frac{t}{2} a^{2}$, and the area of the remaining portion of the shaded region is $\frac{1}{2} b \sqrt{a^{2}-b^{2}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

