Higher Derivatives

Higher derivatives are derivatives of derivatives. Given a differentiable function u = u(x) its derivative u' is a new function, which we may be able to differentiate again to get (u')' = u''.

For example, if $u(x) = \sin x$ then $u' = \cos x$ and $u'' = -\sin x$. We can go on: $(u'')' = u''' = -\cos x$ $(u''' = u^{(3)}$ is called the third derivative of u and u''is the second derivative) and $u''' = u^{(4)} = \sin x$. The function $\sin x$ is a special example – we won't usually "come back to" the function we started with.

Since there's more than one way to write derivatives, there's more than one notation for higher derivatives.

Notations

f'(x)	Df	$\frac{df}{dx}$	$\frac{d}{dx}f$
f''(x)	$D^2 f$	$\frac{d^2f}{dx^2}$	$\left(\frac{d}{dx}\right)^2 f$
$f^{\prime\prime\prime}(x)$	D^3f	$\frac{d^3f}{dx^3}$	$\left(\frac{d}{dx}\right)^3 f$
$f^{(n)}(x)$	$D^n f$	$\frac{d^n f}{dx^n}$	$\left(\frac{d}{dx}\right)^{n}f$

The symbols D and $\frac{d}{dx}$ represent "operators" which can be applied to a function. When you apply one of these operators to a function you get the derivative of that function.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.