The Derivative of $|x|$

The slope of the graph of $f(x)=|x|$ changes abruptly when $x=0$. Does this function have a derivative? If so, what is it? If not, why not?

Solution

At first glance, this seems like a simple question. To the right of y-axis the graph of $f(x)$ has slope +1 . To the left of the y-axis it has slope -1 . It's reasonable to conclude that:

$$
f^{\prime}(x)= \begin{cases}1 & x>0 \\ -1 & x<0\end{cases}
$$

However, this description of the derivative leaves out the value of $f^{\prime}(0)$.
Our formula for the derivative tells us that:

$$
f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x)}{\Delta x}
$$

The slope of the secant line joining the points $(0,0)$ and $(\Delta x, f(\Delta x))$ is:

$$
\frac{f(0+\Delta x)-f(0)}{\Delta x}=\frac{f(\Delta x)}{\Delta x} .
$$

What is the value of this expression when Δx gets close to (but not equal to) zero?

If $\Delta x>0$ then $f(\Delta x)=\Delta x$ and

$$
\frac{f(\Delta x)}{\Delta x}=1
$$

If $\Delta x<0$ then $f(\Delta x)=-1 \cdot \Delta x$ and

$$
\frac{f(\Delta x)}{\Delta x}=-1
$$

The value of $f(\Delta x)$ doesn't depend on the size of Δx and doesn't necessarily converge to a single value as Δx shrinks. The "limit as Δx approaches 0 " isn't well defined, so $f(x)$ is not differentiable at $x=0$.

If we try to find $f^{\prime}(0)$ by finding the slope of the tangent line to the graph of $f(x)$ at $x=0$, we have problems finding that tangent line. Our intuition about the tangent line tells us that any line tangent to the graph at $(0,0)$ must go through $(0,0)$ and then "follow the direction of the graph" near $(0,0)$. The line $y=x$ goes through $(0,0)$ and follows the positive side of the graph; the line $y=-x$ does the same in the negative direction. Neither of these two lines follow the graph away from $(0,0)$ in both directions. The line $y=0$ looks promising but doesn't follow the graph in either direction, nor is it the limit of any sequence of secant lines through $(0,0)$. There is no tangent line to the graph of $f(x)=|x|$ at the point $(0,0)$, so the slope $f^{\prime}(x)$ is not defined for $x=0$.

Either way, we conclude that if $f(x)=|x|, f^{\prime}(0)$ is undefined. We say that $f(x)$ is not differentiable at $x=0$. If a function $f(x)$ is not differentiable at even one point in its domain, $f(x)$ is not a differentiable function.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

