Practice with Definite Integrals

Use antidifferentiation to compute the following definite integrals. Check your work using the geometric definition of the definite integral, graphing and estimation.
a) $\int_{0}^{2} x^{2} d x$
b) $\int_{1}^{e} \frac{1}{x} d x$
c) $\int_{-\pi / 4}^{0} \sin x d x$

Solution

a) $\int_{0}^{2} x^{2} d x$

The antiderivative of x^{2} is $\frac{1}{3} x^{3}$ (plus a constant), so:

$$
\begin{aligned}
\int_{0}^{2} x^{2} d x & =\left.\frac{1}{3} x^{3}\right|_{0} ^{2} \\
& =\frac{1}{3} \cdot 2^{3}-\frac{1}{3} \cdot 0^{3} \\
& =\frac{8}{3}
\end{aligned}
$$

Geometrically, the area under the curve appears to be between 2 and 4 so our answer seems to be correct.
b) $\int_{1}^{e} \frac{1}{x} d x$

The antiderivative of $\frac{1}{x}$ is $\ln |x|$.

$$
\begin{aligned}
\int_{1}^{e} \frac{1}{x} d x & =[\ln |x|]_{1}^{e} \\
& =\ln e-\ln 1 \\
& =1-0 \\
& =1
\end{aligned}
$$

The area under the curve does appear to be between 1 and 1.5.
c) $\int_{-\pi / 4}^{0} \sin x d x$

The antiderivative of $\sin x$ is $-\cos x$.

$$
\begin{aligned}
\int_{-\pi / 4}^{0} \sin x d x & =-\left.\cos x\right|_{-\pi / 4} ^{0} \\
& =-\cos (0)-(-\cos (-\pi / 4)) \\
& =-1+\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1-\sqrt{2}}{2} \\
& \approx-0.2
\end{aligned}
$$

We're computing the area of a region that lies below the x-axis, so we expect the answer to be negative. The estimate -0.2 seems very small but is in fact close to the correct value, as we see when we compare the shaded region to a rectangle with side lengths 0.5 and 0.4 .

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

