Newton's Method

Today we'll discuss the accuracy of Newton's Method.
Recall how Newton's method works: to find the point at which a graph crosses the x-axis you make an initial guess x_{0} at the x-coordinate of that crossing. You then find the tangent line to the graph at x_{0} and use it to improve your guess: x_{1} is the x-coordinate at which the tangent line crosses the x-axis. (See Fig. 1.) You can now draw the tangent line at x_{1} to get a new guess x_{2}, and so on.

Figure 1: Illustration of Newton's Method
In algebraic terms,

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Figure 2 illustrates the $k^{\text {th }}$ iteration of Newton's method.
If we're going to use this to get numerical approximations of solutions, we should know how accurate it is. If x is the exact value of the solution, then x_{1} is $E_{1}=\left|x-x_{1}\right|$ away from the exact answer. The error in our approximation at step n is $E_{n}=\left|x-x_{n}\right|$.

Last time we saw that error values of $E_{n}=\left|\sqrt{5}-x_{n}\right|$ quickly became very close to zero. It turns out that $E_{2} \sim E_{1}^{2}$. So if $E_{0}=10^{-} 1$, the size of the error can be expected to decrease as follows: | E_{0} | E_{1} | E_{2} | E_{3} | E_{4} |
| :--- | :--- | :--- | :--- | :--- |
| 10^{-1} | 10^{-2} | 10^{-4} | 10^{-8} | 10^{-16} | The number of digits of accuracy doubles at each step!

Figure 2: Illustration of Newton's Method.

Newton's method works (very) well if $\left|f^{\prime}\right|$ is not too small, $\left|f^{\prime \prime}\right|$ is not too big, and x_{0} starts near the solution x.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

